Part Number Hot Search : 
ZMM5256B 0040C C5010 UPD4364 HD647 AN1446 41MBC2 TDA8564Q
Product Description
Full Text Search
 

To Download ACS350-XXX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  acs350 user?s manual acs350 drives (0.37?22 kw, 0.5?30 hp)
acs350 drive manuals option manuals (delivered with optional equipment) fcan-01 canopen adapter module user?s manual 3afe68615500 (en) fdna-01 devicenet adapter module user?s manual 3afe68573360 (en) fmba-01 modbus adapter module user?s manual 3afe68586704 (en) fpba-01 profibus dp adapter module user?s manual 3afe68573271 (en) frsa-00 rs-485 adapter board user?s manual 3afe68640300 (en) mfdt-01 flashdrop user?s manual 3afe68591074 (en) mpot-01 potentiometer module instructions for installation and use 3afe68591082 (en, da, de, es, fi, fr, it, nl, pt, ru, sv) mtac-01 pulse encoder interface module user?s manual 3afe68591091 (en) mul1-r1 installation instructions for acs150 and acs350 3afe68642868 (en, da, de, es, fi, fr, it, nl, pt, ru, sv) mul1-r3 installation instructions for acs150 and acs350 3afe68643147 (en, da, de, es, fi, fr, it, nl, pt, ru, sv) maintenance manuals guide for capacitor reforming in acs50/150/350/550 3afe68735190 (en)
acs350 drives 0.37?22 kw 0.5?30 hp user?s manual 3afe68462401 rev d en effective: 30.09.2007 ? 2007 abb oy. all rights reserved.

safety 5 safety what this chapter contains the chapter contains the safety instructions which you must follow when installing, operating and servicing the drive. if ignored, physical injury or death may follow, or damage may occur to the drive, motor or driven equipment. read the safety instructions before you work on the drive. use of warning symbols there are two types of safety warnings throughout this manual: danger; electricity warns of high voltage which can cause physical injury and/or damage to the equipment. general danger warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment.
safety 6 installation and maintenance work these warnings are intended for all who work on the drive, motor cable or motor. warning! ignoring the following instructions can cause physical injury or death, or damage to the equipment. only qualified electricians are allowed to install and maintain the drive! ? never work on the drive, motor cable or motor when input power is applied. after disconnecting the input power, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you start working on the drive, motor or motor cable. always ensure by measuring with a multimeter (impedance at least 1 mohm) that: 1. there is no voltage between the drive input phases u1, v1 and w1 and the ground. 2. there is no voltage between terminals brk+ and brk- and the ground. ? do not work on the control cables when power is applied to the drive or to the external control circuits. externally supplied control circuits may carry dangerous voltage even when the input power of the drive is switched off. ? do not make any insulation or voltage withstand tests on the drive. ? if a drive whose emc filter is not disconnected is installed on an it system [an ungrounded power system or a high resistance-grounded (over 30 ohms) power system], the system will be connected to earth potential through the emc filter capacitors of the drive. this may cause danger or damage the drive. ? if a drive whose emc filter is not disconnected is installed on a corner grounded tn system, the drive will be damaged. note: ? even when the motor is stopped, dangerous voltage is present at the power circuit terminals u1, v1, w1 and u2, v2, w2 and brk+ and brk-. warning! ignoring the following instructions can cause physical injury or death, or damage to the equipment. ? the drive is not field repairable. never attempt to repair a malfunctioning drive; contact your local abb representative or authorized service center for replacement. ? make sure that dust from drilling does not enter the drive during the installation. electrically conductive dust inside the drive may cause damage or lead to malfunction. ? ensure sufficient cooling.
safety 7 operation and start-up these warnings are intended for all who plan the operation, start up or operate the drive. warning! ignoring the following instructions can cause physical injury or death, or damage to the equipment. ? before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. the drive can be adjusted to operate the motor at speeds above and below the speed provided by connecting the motor directly to the power line. ? do not activate automatic fault reset functions if dangerous situations can occur. when activated, these functions will reset the drive and resume operation after a fault. ? do not control the motor with an ac contactor or disconnecting device (disconnecting means); use instead the control panel start and stop keys and or external commands (i/o or fieldbus). the maximum allowed number of charging cycles of the dc c apacitors (i.e. power-ups by applying power) is two per minute and the maximum total number of chargings is 15 000. note: ? if an external source for start command is selected and it is on, the drive will start immediately after an input voltage break or fault reset unless the drive is configured for 3-wire (a pulse) start/stop. ? when the control location is not set to local (loc not shown on the display), the stop key on the control panel will not stop the drive. to stop the drive using the control panel, press the loc/rem key and then the stop key . loc rem
safety 8
table of contents 9 table of contents acs350 drive manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 safety what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 use of warning symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 installation and maintenance work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 operation and start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 table of contents about the manual what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 categorization according to the frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 providing feedback on abb drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 installation and commissioning flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 hardware description what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 overview: connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 type code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 mechanical installation what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 unpacking the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 delivery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 before installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 requirements for the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 mounting the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 mount the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 fasten clamping plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 attach the optional fieldbus module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 planning electrical installation what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 motor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
table of contents 10 ac power line connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 supply disconnecting device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 thermal overload and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 protection against short-circuit inside the drive or in the supply cable . . . . . . . . . . . . . . . . . . . 30 protection against short-circuit in the motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . 31 thermal overload protection of the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 general rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 additional us requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 protecting the relay output contact and attenuating disturbances in case of inductive loads . . . . 34 residual current device (rcd) compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 relay cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 control panel cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 connection of a motor temperature sensor to the drive i/o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 electrical installation what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 input cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 i/o terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 installation checklist checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 start-up, control with i/o and id run what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 how to start up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 how to start up the drive without a control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 how to perform the limited start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 how to perform the guided start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 how to control the drive through the i/o interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 how to perform the id run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 id run procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
table of contents 11 control panels what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 about control panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 reference mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 copy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 basic control panel alarm codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 assistant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 assistants mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 changed parameters mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 fault logger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 time and date mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 parameter backup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 i/o settings mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 application macros what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 summary of i/o connections of application macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 abb standard macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3-wire macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 alternate macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 motor potentiometer macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 hand/auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 pid control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 torque control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 default i/o connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 user macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
table of contents 12 program features what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 start-up assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 the default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 list of the tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 block diagram: start, stop, direction source for ext1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 block diagram: reference source for ext1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 programmable analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 programmable analog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 programmable relay output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 frequency input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 transistor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 dc magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 maintenance trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
table of contents 13 dc hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 speed compensated stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 flux braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 flux optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 custom u/f ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 ir compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 15 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 ai table of contents 14 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 pid control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 process controller pid1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 external/trim controller pid2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 sleep function for the process pid (pid1) control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 motor temperature measurement through the standard i/o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 state shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 timed functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 sequence programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 example 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 actual signals and parameters what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 fieldbus equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 default values with different macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 01 operating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 03 fb actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 45 04 fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 parameters ? short form list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
table of contents 15 parameters ? complete descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10 start/stop/dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11 reference select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12 constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 13 analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 67 14 relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 15 analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 16 system controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 18 freq in & tran out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 19 timer & counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 20 limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 21 start/stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 22 accel/decel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 23 speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 24 torque control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 91 25 critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 26 motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 29 maintenance trig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 95 30 fault functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 31 automatic reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 01 32 supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 33 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 34 panel display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 35 motor temp meas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 36 timed functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 40 process pid set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 14 41 process pid set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 21 42 ext / trim pid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 43 mech brk control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 50 encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 51 ext comm module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 52 panel comm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 53 efb protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 54 fba data in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 55 fba data out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 84 sequence prog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 98 options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 99 start-up data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 fieldbus control with embedded fieldbus what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 setting up communication through the embedded modbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 the fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 the control word and the status word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
table of contents 16 reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 49 fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 actual value scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 modbus mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 function codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 exception codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 abb drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 dcu communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 fieldbus control with fieldbus adapter what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . 268 drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 the fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 fieldbus references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 fault tracing what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 alarm and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 how to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 alarm messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 74 alarms generated by the basic control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 embedded fieldbus faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 no master device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 same device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 incorrect wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 maintenance and hardware diagnostics what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 fan replacement (r1?r4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
table of contents 17 leds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 technical data what this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 current and power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 cooling air flow requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 power cable sizes and fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 power cables: terminal sizes, maximum cable diameters and tightening torques . . . . . . . . . . . . 295 dimensions, weights and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 input power connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 motor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 brake resistor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 ce marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 compliance with the emc directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 compliance with en 61800-3 (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 c-tick marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 compliance with iec 61800-3 (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 rohs marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 ul marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 iec/en 61800-3 (2004) definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 compliance with the iec/en 61800-3 (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 product protection in the usa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 brake resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 brake resistor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 resistor installation and wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 mandatory circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 parameter set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 dimensions frame sizes r0 and r1, ip20 (cabinet installation) / ul open . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 frame sizes r0 and r1, ip20 / nema 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 frame size r2, ip20 (cabinet installation) / ul open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 frame size r2, ip20 / nema 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 frame size r3, ip20 (cabinet installation) / ul open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 frame size r3, ip20 / nema 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 frame size r4, ip20 (cabinet installation) / ul open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
table of contents 18
about the manual 19 about the manual what this chapter contains the chapter describes the intended audience and compatibility of this manual. it also contains a flowchart of steps for checking the delivery and installing and commissioning the drive. the flowchart refers to chapters/sections in this manual. compatibility the manual is compatible with the acs350 drive firmware version 2.52b or later. see parameter 3301 firmware. intended audience this manual is intended for persons who plan the installation, install, commission, use and service the drive. read the manual before working on the drive. the reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols. this manual is written for readers worldwide. both si and imperial units are shown. special us instructions for installations in the united states are given. categorization according to the frame size the acs350 is manufactured in frame sizes r0...r4. some instructions, technical data and dimensional drawings which only concern certain frame sizes are marked with the symbol of the frame size (r0...r4). to identify the frame size of your drive, see the rating table on page 290 in chapter technical data . product and service inquiries address any inquiries about the product to your local abb representative, quoting the type code and serial number of the unit in question. a listing of abb sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting drives ? sales, support and service network . product training for information on abb product training, navigate to www.abb.com/drives and select drives ? training courses . providing feedback on abb drives manuals your comments on our manuals are welcome. go to www.abb.com/drives , then select successively drives ? document library ? manuals feedback form .
about the manual 20 installation and commissioning flowchart task see identify the frame size of your drive: r0?r4. technical data : ratings on page 290 plan the installation: select the cables, etc. check the ambient conditions, ratings and required cooling air flow. planning electrical installation on page 29 technical data on page 290 unpack and check the drive. mechanical installation : unpacking the drive on page 25 if the drive will be connected to an it (ungrounded) or corner grounded system, check that the internal emc filter is not connected. hardware description : type code on page 23 electrical installation : connecting the power cables on page 38 install the drive on a wall or in a cabinet. mechanical installation on page 25 route the cables. planning electrical installation : routing the cables on page 35 check the insulation of the input cable and the motor and the motor cable. electrical installation : checking the insulation of the assembly on page 37 connect the power cables. electrical installation : connecting the power cables on page 38 connect the control cables. electrical installation : connecting the control cables on page 40 check the installation. installation checklist on page 43 commission the drive. start-up, control with i/o and id run on page 45
hardware description 21 hardware description what this chapter contains the chapter describes the construction and type code information in short. overview the acs350 is a wall or cabinet mountable drive for controlling ac motors. the construction of frame sizes r0?r4 varies to some extent. 9 emc filter grounding screw (emc). note: screw is on front for frame size r4. 10 varistor grounding screw (var) 11 fieldbus adapter (serial communication module) connection 12 i/o connections 13 input power connection (u1, v1, w1), brake resistor connection (brk+, brk-) and motor connection (u2, v2, w2) 14 i/o clamping plate 15 clamping plate 16 clamps 1 cooling outlet through top cover 2 mounting holes 3 panel cover (a) / basic control panel (b) / assistant control panel (c) 4 terminal cover (or optional potentiometer unit mpot-01) 5 panel connection 6 option connection 7 flashdrop connection 8 power ok and fault leds (see leds on page 287 ) covers off (r0 and r1) covers on (r0 and r1) 1 2 3a 4 5 7 13 12 11 9 3b 3c 8 6 8 10 14 15 16 16 emc var emc var 2
hardware description 22 overview: connections the diagram gives an overview of connections. i/o connections are parameterable. the diagram shows the default i/o connections for the abb standard macro. see chapter application macros for i/o connections for the different macros and chapter electrical installation for installation in general. di1 stop/start di2 forward/reverse di3 constant speed selection di4 constant speed selection di5 acceler. and deceler. selection 1) digital input common aux. voltage output common +24 v aux. voltage output +24 vdc, max. 200 ma dosrc gnd dcom doout dognd rono ronc digital output, pnp transistor type 30 vdc, max. 100 ma relay output 250 vac / 30 vdc v ma gnd analog input circuit common +10v reference voltage +10 vdc, max 10 ma ai2 not in use by default gnd analog input circuit common ai1 output frequency/speed reference, 0?10 v scr screen ao gnd max. 500 ohm output frequency 0?20 ma ai1 ai2 flashdrop fieldbus adapter devicenet, profibus dp, canopen, modbus rtu (rs-485) u1 v1 w1 l1 l2 l3 3-phase power supply u2 v2 w2 ac motor m 3 ~ brk+ brk- t encoder brake resistor emc var emc filter grounding screw varistor grounding screw rocom pe 10 6 6 1?10 kohm analog output circuit common 8 programmable digital inputs (abb standard macro defaults shown) brake chopper programmable relay and digital outputs 1) di5 can also be used as a frequency input. control panel (rj-45) modbus rtu (rs-232)
hardware description 23 type code the type code contains information on the specifications and configuration of the drive. you find the type code on the type designation label attached to the drive. the first digits from the left express the basic configuration, for example acs350-03e- 08a8-4. the optional selections are given after that, separated by + signs, for example +j404. the explanations of the type code selections are described below. acs350-03e-08a8-4+j404+... acs350 product series 01 = 1-phase input 03 = 3-phase input 1-phase/3-phase in format xxay, where xx indicates the integer part and y the fractional part, e.g. 08a8 means 8.8 a. for more information, see section ratings on page 290 . output current rating 2 = 200?240 vac 4 = 380?480 vac input voltage range e = emc filter connected, 50 hz frequency u = emc filter disconnected, 60 hz frequency configuration j404 = acs-cp-c basic control panel j400 = acs-cp-a assistant control panel (area 1: language support for en, en (am), de, it, es, pt, nl, fr, da, fi, sv) j416 = acs-cp-l assistant control panel (area 2: language support for en, de, ru, pl, tr, cs) j402 = mpot-01 potentiometer k451 = fdna-01 devicenet k454 = fpba-01 profibus dp k457 = fcan-01 canopen k458 = fmba-01 modbus rtu options
hardware description 24
mechanical installation 25 mechanical installation what this chapter contains the chapter describes the mechanical installation procedure of the drive. unpacking the drive the drive (1) is delivered in a package that also contains the following items (frame size r1 shown in the figure): ? plastic bag (2) including clamping plate (also used for i/o cables in frame size r3 and r4), i/o clamping plate (for frame sizes r0?r2), fieldbus option ground plate, clamps and screws ? panel cover (3) ? mounting template, integrated into the package (4) ? user?s manual (5) ? possible options (fieldbus, potentiometer, encoder, all with instructions, basic control panel or assistant control panel). 1 2 5 3 p o w e r f a u l t 4
mechanical installation 26 delivery check check that there are no signs of damage. notify the shipper immediately if damaged components are found. before attempting installation and operation, check the information on the type designation label of the drive to verify that the drive is of the correct type. the type designation label is attached to the left side of the drive. an example label and explanation of the label contents are shown below. before installation the acs350 may be installed on the wall or in a cabinet. check the enclosure requirements for the need to use the nema 1 option in wall installations (see chapter technical data ). the drive can be mounted in three different ways, depending on the frame size: a) back mounting (all frame sizes) b) side mounting (frame sizes r0?r2) c) din rail mounting (all frame sizes). the drive must be installed in an upright position. check the installation site according to the requirements below. refer to chapter dimensions for frame details. requirements for the installation site see chapter technical data for the allowed operation conditions of the drive. wall the wall should be as close to vertical and even as possible, of non-flammable material and strong enough to carry the weight of the drive. floor the floor/material below the installation should be non-flammable. free space around the drive the required free space for cooling above and below the drive is 75 mm (3 in.). no free space is required on the sides of the drive, so they can be mounted side by side.  acs350-03e-08a8-4 ip20 / ul open type lll llllllllll llllllllll lllllllll lll llll 4 kw (5 hp) s/n ywwrxxxx u1 3~380480 v lllll llllllllllll lll llllll llll llllllllll i1 13.6 a 68468167 f1 4863 hz u2 3~0u1 v i2 8.8 a (150% 1/10 min) rohs f2 0500 hz type designation label 1 type code, see section type code on page 23 2 degree of protection (ip and ul/nema) 3 nominal ratings, see section ratings on page 290 . 4 serial number of format ywwrxxxxws, where y: 5?9, a, ? for 2005?2009, 2010, ? ww: 01, 02, 03, ? for week 1, week 2, week 3, ? r: a, b, c, ? for product revision number xxxx: integer starting every week from 0001 5 abb mrp code of the drive 6 ce marking and c-tick, c-ul us and rohs marks (the label of your drive shows the valid markings) 2 3 4 5 1 6
mechanical installation 27 mounting the drive mount the drive note: make sure that dust from drilling does not enter the drive during the installation. with screws 1. mark the locations for the holes using e.g. the mounting template cut out from the package. the locations of the holes are also shown in the drawings in chapter dimensions . the number and location of the holes used depend on how the drive is mounted: a) back mounting (frame sizes r0?r4): four holes b) side mounting (frame sizes r0?r2): three holes; one of the bottom holes is located in the clamping plate. 2. fix the screws or bolts to the marked locations. 3. position the drive onto the screws on the wall. 4. tighten the screws in the wall securely. on din rail 1. click the drive to the rail as shown in figure a below. to detach the drive, press the release lever on top of the drive as shown in figure b. ab
mechanical installation 28 fasten clamping plates see figure a below. 1. fasten the clamping plate to the plate at the bottom of the drive with the provided screws. 2. fasten the i/o clamping plate to the clamping plate (frame sizes r0?r2) with the provided screws. attach the optional fieldbus module see figure b above. 3. connect the power and control cables as instructed in chapter electrical installation . 4. place the fieldbus module on the option ground plate and tighten the grounding screw on the left corner of the fieldbus module. this fastens the module to the option ground plate. 5. if the terminal cover is not already removed, push the recess in the cover and simultaneously slide the cover off the frame. 6. snap the fieldbus module attached to the option ground plate in position so that the module is plugged to the connection on the drive front and the screw holes in the option ground plate and the i/o clamping plate are aligned. 7. fasten the option ground plate to the i/o clamping plate with the provided screws. 8. slide the terminal cover back in place. 2 a b 2 3 4 7 8 3 7 6 5 1 4 1
planning electrical installation 29 planning electrical installation what this chapter contains the chapter contains the instructions that you must follow when selecting the motor, cables, protections, cable routing and way of operation for the drive. if the recommendations given by abb are not followed, the drive may experience problems that the warranty does not cover. note: the installation must always be designed and made according to applicable local laws and regulations. abb does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. motor selection select the 3-phase ac induction motor according to the rating table on page 290 in chapter technical data . the table lists the typical motor power for each drive type. ac power line connection use a fixed connection to the ac power line. warning! as the leakage current of the device typically exceeds 3.5 ma, a fixed installation is required according to iec 61800-5-1. supply disconnecting device install a hand-operated input disconnecting device (disconnecting means) between the ac power source and the drive. the disconnecting device must be of a type that can be locked to the open position for installation and maintenance work. ? europe : to meet the european union directives, according to standard en 60204-1, safety of machinery, the disconnecting device must be one of the following types: - a switch-disconnector of utilization category ac-23b (en 60947-3) - a disconnector having an auxiliary contact that in all cases causes switching devices to break the load circuit before the opening of the main contacts of the disconnector (en 60947-3) - a circuit breaker suitable for isolation in accordance with en 60947-2. ? other regions : the disconnecting device must conform to the applicable safety regulations.
planning electrical installation 30 thermal overload and short-circuit protection the drive protects itself and the input and motor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive. no additional thermal protection devices are needed. warning! if the drive is connected to multiple motors, a separate thermal overload switch or a circuit breaker must be used for protecting each cable and motor. these devices may require a separate fuse to cut off the short-circuit current. protection against short-circuit inside the drive or in the supply cable arrange the protection according to the following guidelines. 1) size the fuses according to instructions given in chapter technical data . the fuses will protect the input cable in short-circuit situations, restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive. 2) circuit breakers which have been tested by abb with the acs350 can be used. fuses must be used with other circuit breakers. contact your local abb representative for the approved breaker types and supply network characteristics. warning! due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases may escape from the breaker enclosure in case of a short-circuit. to ensure safe use, special attention must be paid to the installation and placement of the breakers. follow the manufacturer?s instructions. circuit diagram short-circuit protection protect the drive and input cable with fuses or a circuit breaker. see footnotes 1) and 2). m 3~ distribution board input cable m 3~ drive 1) 2) i >
planning electrical installation 31 protection against short-circuit in the motor and motor cable the drive protects the motor and motor cable in a short-circuit situation when the motor cable is dimensioned according to the nominal current of the drive. no additional protection devices are needed. thermal overload protection of the motor according to regulations, the motor must be protected against thermal overload and the current must be switched off when overload is detected. the drive includes a motor thermal protection function that protects the motor and switches off the current when necessary. it is also possible to connect a motor temperature measurement to the drive. the user can tune both the thermal model and the temperature measurement function further by parameters. the most common temperature sensors are: ? motor sizes iec180?225: thermal switch (e.g. klixon) ? motor sizes iec200?250 and larger: ptc or pt100. for more information on the thermal model, see section motor thermal protection on page 116 . for more information on the temperature measurement function see section motor temperature measurement through the standard i/o on page 124 .
planning electrical installation 32 selecting the power cables general rules dimension the input power and motor cables according to local regulations . ? the cable must be able to carry the drive load current. see chapter technical data for the rated currents. ? the cable must be rated for at least 70 c maximum permissible temperature of the conductor in continuous use. for us, see section additional us requirements on page 33 . ? the conductivity of the pe conductor must be equal to that of the phase conductor (same cross-sectional area). ? 600 vac cable is accepted for up to 500 vac. ? refer to chapter technical data for the emc requirements. a symmetrical shielded motor cable (see the figure below) must be used to meet the emc requirements of the ce and c-tick marks. a four-conductor system is allowed for input cabling, but a shielded symmetrical cable is recommended. compared to a four-conductor system, the use of a symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as motor bearing currents and wear. alternative power cable types power cable types that can be used with the drive are presented below. symmetrical shielded cable: three phase conductors, a concentric or otherwise symmetrically constructed pe conductor and a shield motor cables (recommended for input cables also) pe conductor and shield shield shield pe pe allowed as input cables a four-conductor system: three phase conductors and a protective conductor note: a separate pe conductor is required if the conductivity of the cable shield is not sufficient for the purpose. shield pe pe
planning electrical installation 33 motor cable shield to function as a protective conductor, the shield must have the same cross-sectional area as the phase conductors when they are made of the same metal. to effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least 1/10 of the phase conductor conductivity. the requirements are easily met with a copper or aluminium shield. the minimum requirement of the motor cable shield of the drive is shown below. it consists of a concentric layer of copper wires. the better and tighter the shield, the lower the emission level and bearing currents. additional us requirements type mc continuous corrugated aluminium armor cable with symmetrical grounds or shielded power cable is recommended for the motor cables if metallic conduit is not used. the power cables must be rated for 75c (167f). conduit where conduits must be coupled together, bridge the joint with a ground conductor bonded to the conduit on each side of the joint. bond the conduits also to the drive enclosure. use separate conduits for input power, motor, brake resistors and control wiring. do not run motor wiring from more than one drive in the same conduit. armored cable / shielded power cable six-conductor (three phases and three ground) type mc continuous corrugated aluminium armor cable with symmetrical grounds is available from the following suppliers (trade names in parentheses): ? anixter wire & cable (philsheath) ? bicc general corp (philsheath) ? rockbestos co. (gardex) ? oaknite (clx). shielded power cables are available from belden, lappkabel (?lflex) and pirelli. insulation jacket copper wire screen cable core
planning electrical installation 34 protecting the relay output contact and attenuating disturbances in case of inductive loads inductive loads (relays, contactors, motors) cause voltage transients when switched off. equip inductive loads with noise attenuating circuits [varistors, rc filters (ac) or diodes (dc)] in order to minimize the emc emission at switch-off. if not suppressed, the disturbances may connect capacitively or inductively to other conductors in the control cable and form a risk of malfunction in other parts of the system. install the protective component as close to the inductive load as possible. do not install protective components at the i/o terminal block. residual current device (rcd) compatibility acs350-01x drives are suitable to be used with residual current devices of type a, acs350-03x drives with residual current devices of type b. for acs350-03x drives, other measures for protection in case of direct or indirect contact, such as separation from the environment by double or reinforced insulation or isolation from the supply system by a transformer, can also be applied. selecting the control cables all analog control cables and the cable used for the frequency input must be shielded. use a double-shielded twisted pair cable (figure a, e.g. jamak by nk cables) for analog signals. employ one individually shielded pair for each signal. do not use common return for different analog signals. 24 vdc 230 vac 230 vac diode varistor rc filter drive relay output drive relay output drive relay output
planning electrical installation 35 a double-shielded cable is the best alternative for low-voltage digital signals, but a single-shielded or unshielded twisted multipair cable (figure b) is also usable. however, for frequency input, always use a shielded cable. run analog and digital signals in separate cables. relay-controlled signals, providing their voltage does not exceed 48 v, can be run in the same cables as digital input signals. it is recommended that the relay-controlled signals are run as twisted pairs. never mix 24 vdc and 115/230 vac signals in the same cable. relay cable the cable type with braided metallic screen (e.g. ?lflex by lappkabel) has been tested and approved by abb. control panel cable in remote use, the cable connecting the control panel to the drive must not exceed 3 m (10 ft). the cable type tested and approved by abb is used in control panel option kits. connection of a motor temperature sensor to the drive i/o please refer to section motor temperature measurement through the standard i/o on page 124 for information on connecting a motor temperature sensor to the drive i/o. routing the cables route the motor cable away from other cable routes. motor cables of several drives can be run in parallel installed next to each other. it is recommended that the motor cable, input power cable and control cables be installed on separate trays. avoid long parallel runs of motor cables with other cables to decrease electromagnetic interference caused by the rapid changes in the drive output voltage. where control cables must cross power cables make sure that they are arranged at an angle as near to 90 degrees as possible. the cable trays must have good electrical bonding to each other and to the grounding electrodes. aluminium tray systems can be used to improve local equalizing of potential. a a double-shielded twisted multipair cable b a single-shielded twisted multipair cable
planning electrical installation 36 a diagram of the cable routing is shown below. control cable ducts 90 min. 500 mm (20 in.) motor cable input power cable control cables min. 200 mm (8 in.) min. 300 mm (12 in.) motor cable power cable drive 230 v 24 v 24 v 230 v lead 24 v and 230 v control cables in separate ducts inside the cabinet. not allowed unless the 24 v cable is insulated for 230 v or insulated with an insulation sleeving for 230 v.
electrical installation 37 electrical installation what this chapter contains the chapter describes the electrical installation procedure of the drive. warning! the work described in this chapter may only be carried out by a qualified electrician. follow the instructions in chapter safety on page 5 . ignoring the safety instructions can cause injury or death. make sure that the drive is disconnected from the input power during installation. if the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power. checking the insulation of the assembly drive do not make any voltage tolerance or insulation resistance tests (e.g. hi-pot or megger) on any part of the drive as testing can damage the drive. every drive has been tested for insulation between the main circuit and the chassis at the factory. also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically. input cable check the insulation of the input cable according to local regulations before connecting to the drive. motor and motor cable check the insulation of the motor and motor cable as follows: 1. check that the motor cable is connected to the motor and disconnected from the drive output terminals u2, v2 and w2. 2. measure the insulation resistances of the motor cable and the motor between each phase and the protective earth by using a measuring voltage of 1 kv dc. the insulation resistance must be higher than 1 mohm. pe ohm m
electrical installation 38 connecting the power cables connection diagram input output u1 v1 w1 3 ~ motor u1 v1 w1 1) u2 v2 w2 brk- l1 l2 l3 pe drive pe for alternatives, see section supply disconnecting device on page 29 . optional brake resistor 1) ground the other end of the pe conductor at the distribution board. 2) use a separate grounding cable if the conductivity of the cable shield is insufficient (smaller than the conductivity of the phase conductor) and there is no symmetrically constructed grounding conductor in the cable (see section selecting the power cables on page 32 ). note: do not use an asymmetrically constructed motor cable. if there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the drive and motor ends. grounding of the motor cable shield at the motor end for minimum radio frequency interference: ? ground the cable by twisting the shield as follows: flattened width > 1/5 length ? or ground the cable shield 360 degrees at the lead-through of the motor terminal box. a b b > 1/5 a brk+ 2)
electrical installation 39 procedure 1. on it (ungrounded) systems and corner grounded tn systems, disconnect the internal emc filter by removing the emc screw. for 3-phase u-type drives (with type code acs350-03u-), the emc screw is already removed at the factory and replaced by a plastic one. warning! if a drive whose emc filter is not disconnected is installed on an it system [an ungrounded power system or a high resistance-grounded (over 30 ohms) power system], the system w ill be connected to earth potential through the emc filter capacitors of the drive. this may cause danger or damage the drive. if a drive whose emc filter is not disconnected is installed on a corner grounded tn system, the drive will be damaged. 2. fasten the grounding conductor (pe) of the input power cable under the grounding clamp. connect the phase conductors to the u1, v1 and w1 terminals. use a tightening torque of 0.8 nm (7 lbf in.) for frame sizes r0?r2, 1.7 nm (15 lbf in.) for r3, and 2.5 nm (22 lbf in.) for r4. 3. strip the motor cable and twist the shield to form as short a pigtail as possible. fasten the twisted shield under the grounding clamp. connect the phase conductors to the u2, v2 and w2 terminals. use a tightening torque of 0.8 nm (7 lbf in.) for frame sizes r0?r2, 1.7 nm (15 lbf in.) for r3, and 2.5 nm (22 lbf in.) for r4. 4. connect the optional brake resistor to the brk+ and brk- terminals with a shielded cable using the same procedure as for the motor cable in step 3. 5. secure the cables outside the drive mechanically. 2 2 3 3 4 emc emc disconnecting emc screw, frame size r4 disconnecting emc screw, frame size r0?r3 1 1 connecting power cables and grounding
electrical installation 40 connecting the control cables i/o terminals the figure below shows the i/o connectors. tightening torque is 0.5 nm / 4.4 lbf. in. default connection the default connection of the control signals depends on the application macro in use, which is selected with parameter 9902 . see chapter application macros for the connection diagrams. voltage and current selection switch s1 selects voltage (0 (2)?10 v / -10?10 v) or current (0 (4)?20 ma / -20?20 ma) as the signal types for analog inputs ai1 and ai2. the factory settings are unipolar voltage for ai1 (0 (2)?10 v) and unipolar current for ai2 (0 (4)?20 ma), which correspond to the default usage in the application macros. voltage and current connection bipolar voltage (-10?10 v) and current (-20?20 ma) are also possible. if a bipolar connection is used instead of a unipolar one, see section programmable analog inputs on page 102 for how to set parameters accordingly. frequency input if di5 is used as a frequency input, see section frequency input on page 105 for how to set parameters accordingly. x1a: 1: scr 2: ai1 3: gnd 4: +10 v 5: ai2 6: gnd 7: ao 8: gnd 9: +24 v 10: gnd 11: dcom 12: di1 13: di2 14: di3 15: di4 16: di5 digital or frequency input x1b: 17: rocom 18: ronc 19: rono 20: dosrc 21: doout 22: dognd 12345678 9 10111213141516 202122 17 18 19 x1b x1a ai1 ai2 ma v s1 ai1 ai2 top position: i [0 (4)?20 ma, default for ai2; or -20?20 ma] bottom position: u [0 (2)?10 v, default for ai1; or -10?10 v] s1 scr ai gnd +10 v gnd -10 v scr ai gnd +10v 1?10 kohm unipolar voltage bipolar voltage scr ai gnd unipolar/bipolar current use external power supply.
electrical installation 41 connection example of a two-wire sensor hand/auto, pid control and torque control macros (see pages 91 , 92 , 93 , respectively) use analog input 2 (ai2). the macro wiring diagrams for these macros show the connection when a separately powered sensor is used. the figure below gives an example of a connection using a two-wire sensor. note: the sensor is supplied through its current output. thus the output signal must be 4?20 ma. warning! all elv (extra low voltage) circuits connected to the drive must be used within a zone of equipotential bonding, i.e. within a zone where all simultaneously accessible conductive parts are electrically connected to prevent hazardous voltages appearing between them. this is accomplished by a proper factory grounding. x1a 5 ai2 process actual value measurement or reference, 4?20 ma, r in = 100 ohm 6gnd ? 9 +24v auxiliary voltage output, non-isolated, +24 vdc, max. 200 ma 10 gnd p i 4?20 ma
electrical installation 42 procedure 1. remove the terminal cover by simultaneously pushing the recess and sliding the cover off the frame. 2. analog signals : strip the outer insulation of the analog signal cable 360 degrees and ground the bare shield under the clamp. 3. connect the conductors to the appropriate terminals. 4. twist the grounding conductors of each pair in the analog signal cable together and connect the bundle to the scr terminal. 5. digital signals : connect the conductors of the cable to the appropriate terminals. 6. twist the grounding conductors and shields (if any) of the digital signal cables to a bundle and connect to the scr terminal. 7. secure all cables outside the drive mechanically. 8. unless you need to install the optional fieldbus module (see page 28 ), slide the terminal cover back in place. 2 2 3 4 5 1 emc var
installation checklist 43 installation checklist checklist check the mechanical and electrical installation of the drive before start-up. go through the checklist below together with another person. read chapter safety on the first pages of this manual before you work on the drive. check mechanical installation the ambient operating conditions are allowed. (see mechanical installation: requirements for the installation site on page 26 , technical data : cooling air flow requirements on page 292 and ambient conditions on page 298 .) the drive is fixed properly on an even vertical non-flammable wall. (see mechanical installation. ) the cooling air will flow freely. (see mechanical installation : free space around the drive on page 26 .) the motor and the driven equipment are ready for start. (see planning electrical installation : motor selection on page 29 and technical data : motor connection on page 296 .) electrical installation (see planning electrical installation and electrical installation . ) for ungrounded and corner grounded systems: the internal emc filter is disconnected (emc screw removed). the capacitors are reformed if the drive has been stored over two years. the drive is grounded properly. the input power voltage matches the drive nominal input voltage. the input power connections at u1, v1 and w1 are ok and tightened with the correct torque. appropriate input power fuses and disconnector are installed. the motor connections at u2, v2 and w2 are ok and tightened with the correct torque. the motor cable is routed away from other cables. the external control (i/o) connections are ok. the input power voltage cannot be applied to the output of the drive (with a bypass connection). terminal cover and, for nema 1, hood and connection box, are in place.
installation checklist 44
start-up, control with i/o and id run 45 start-up, control with i/o and id run what this chapter contains the chapter instructs how to: ? perform the start-up ? start, stop, change the direction of rotation and adjust the speed of the motor through the i/o interface ? perform an identification run for the drive. using the control panel to do these tasks is explained briefly in this chapter. for details on how to use the control panel, refer to chapter control panels starting on page 57 . how to start up the drive how you start up the drive depends on the control panel you have, if any. ? if you have no control panel , follow the instructions given in section how to start up the drive without a control panel on page 45 . ? if you have a basic control panel , follow the instructions given in section how to perform the limited start-up on page 46 . ? if you have an assistant control panel , you can either run the start-up assistant (see section how to perform the guided start-up on page 51 ) or perform a limited start-up (see section how to perform the limited start-up on page 46 ). the start-up assistant, which is included in the assistant control panel only, guides you through all essential settings to be done. in the limited start-up, the drive gives no guidance; you go through the very basic settings by following the instructions given in the manual. how to start up the drive without a control panel safety the start-up may only be carried out by a qualified electrician. the safety instructions given in chapter safety must be followed during the start-up procedure. the drive will start up automatically at power up if the external run command is on. check the installation. see the checklist in chapter installation checklist . check that the starting of the motor does not cause any danger. de-couple the driven machine if there is a risk of damage in case of incorrect direction of rotation.
start-up, control with i/o and id run 46 how to perform the limited start-up for the limited start-up, you can use the basic control panel or the assistant control panel. the instructions below are valid for both control panels, but the displays shown are the basic control panel displays, unless the instruction applies to the assistant control panel only. before you start, ensure that you have the motor nameplate data on hand. power-up apply input power and wait for a moment. check that the red led is not lit and the green led is lit but not blinking. the drive is now ready for use. safety the start-up may only be carried out by a qualified electrician. the safety instructions given in chapter safety must be followed during the start-up procedure. the drive will start up automatically at power up if the external run command is on. check the installation. see the checklist in chapter installation checklist . check that the starting of the motor does not cause any danger. de-couple the driven machine if: ? there is a risk of damage in case of incorrect direction of rotation, or ? an id run needs to be performed during the drive start-up. id run is essential only in applications that require the ultimate in motor control accuracy. power-up apply input power. the basic control panel powers up into the output mode. the assistant control panel asks if you want to run the start- up assistant. if you press , the start-up assistant is not run, and you can continue with manual start-up in a similar manner as described below for the basic control panel. rem hz output fwd 00 . exit do you want to use the start-up assistant? yes no exit ok 00:00 choice rem
start-up, control with i/o and id run 47 manual entry of start-up data (parameter group 99) if you have an assistant control panel, select the language (the basic control panel does not support languages). see parameter 9901 for the values of the available language alternatives. the general parameter setting procedure is described below for the basic control panel. you find more detailed instructions for the basic control panel on page 63 . instructions for the assistant control panel are on page 74 . the general parameter setting procedure: 1. to go to the main menu, press if the bottom line shows output; otherwise press repeatedly until you see menu at the bottom. 2. press keys / until you see ?par? and press . 3. find the appropriate parameter group with keys / and press . 4. find the appropriate parameter in the group with keys / . 5. press and hold for about two seconds until the parameter value is shown with under the value. 6. change the value with keys / . the value changes faster while you keep the key pressed down. 7. save the parameter value by pressing . select the application macro (parameter 9902 ). the general parameter setting procedure is given above. the default value 1 (abb standard) is suitable in most cases. select the motor control mode (parameter 9904 ). 1 (vector:speed) is suitable in most cases. 2 (vector:torq) is suitable for torque control applications. 3 (scalar:freq) is recommended ? for multimotor drives when the number of the motors connected to the drive is variable ? when the nominal current of the motor is less than 20% of the nominal current of the drive ? when the drive is used for test purposes with no motor connected. 9901 language par edit english cancel save 00:00 [0] rem rem menu fwd ref rem par fwd -01- rem par fwd 2001 rem par fwd 2002 set rem rpm par set fwd 1500 rem rpm par set fwd 1600 rem par fwd 2002 rem par fwd 9902 rem par fwd 9904
start-up, control with i/o and id run 48 enter the motor data from the motor nameplate: note : set the motor data to exactly the same value as on the motor nameplate. for example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter 9908 motor nom speed to 1500 rpm results in the wrong operation of the drive. ? motor nominal voltage (parameter 9905 ) ? motor nominal current (parameter 9906 ) allowed range: 0.2?2.0 i 2n a ? motor nominal frequency (parameter 9907 ) ? motor nominal speed (parameter 9908 ) ? motor nominal power (parameter 9909 ) select the motor identification method (parameter 9910 ). the default value 0 (off/idmagn) using the identification magnetization is suitable for most applications. it is applied in this basic start-up procedure. note however that this requires that: ? parameter 9904 is set to 1 (vector: speed) or 2 (vector: torq) ? parameter 9904 is set to 3 (scalar: freq), and parameter 2101 is set to 3 (scalar flystart) or 5 (fly + boost). if your selection is 0 (off/idmagn), move to the next step. value 1 (on) should be selected if: - the operation point is near zero speed, and/or - operation at torque range above the motor nominal torque over a wide speed range and without any measured speed feedback is required. if you decide to do the id run (value 1 (on)), continue by following the separate instructions given on page 54 in section how to perform the id run and then return to step direction of the motor rotation on page 49 . m2aa 200 mla 4 1475 1475 1470 1470 1475 1770 32.5 56 34 59 54 59 0.83 0.83 0.83 0.83 0.83 0.83 3gaa 202 001 - ada 180 iec 34-1 6210/c3 6312/c3 cat. no 35 30 30 30 30 30 50 50 50 50 50 60 690 y 400 d 660 y 380 d 415 d 440 d v hz kw r/min a cos ia/in t e/s ins.cl. f ip 55 no iec 200 m/l 55 3 motor abb motors 380 v supply voltage rem par fwd 9905 rem par fwd 9906 rem par fwd 9907 rem par fwd 9908 rem par fwd 9909
start-up, control with i/o and id run 49 identification magnetization with id run selection 0 (off) press key to switch to local control (loc shown on the left). press to start the drive. the motor model is now calculated by magnetizing the motor for 10 to 15 s at zero speed. direction of the motor rotation check the direction of the motor rotation. ? if the drive is in remote control (rem shown on the left), switch to local control by pressing . ? to go to the main menu, press if the bottom line shows output; otherwise press repeatedly until you see menu at the bottom. ? press keys / until you see ?ref? and press . ? increase the frequency reference from zero to a small value with key . ? press to start the motor. ? check that the actual direction of the motor is the same as indicated on the display (fwd means forward and rev reverse). ? press to stop the motor. to change the direction of the motor rotation: ? disconnect input power from the drive, and wait 5 minutes for the intermediate circuit capacitors to discharge. measure the voltage between each input terminal (u1, v1 and w1) and earth with a multimeter to ensure that the drive is discharged. ? exchange the position of two motor cable phase conductors at the drive output terminals or at the motor connection box. ? verify your work by applying input power and repeating the check as described above. speed limits and acceleration/deceleration times set the minimum speed (parameter 2001 ). set the maximum speed (parameter 2002 ). set the acceleration time 1 (parameter 2202 ). note: check also acceleration time 2 (parameter 2205 ) if two acceleration times will be used in the application. loc rem loc rem loc hz set fwd xxx . forward direction reverse direction loc par fwd 2001 loc par fwd 2002 loc par fwd 2202
start-up, control with i/o and id run 50 set the deceleration time 1 (parameter 2203 ). note: set also deceleration time 2 (parameter 2206 ) if two deceleration times will be used in the application. saving a user macro and final check the start-up is now completed. however, it might be useful at this stage to set the parameters required by your application and save the settings as a user macro as instructed in section user macros on page 94 . check that the drive state is ok. basic control panel: check that there are no faults or alarms shown on the display. if you want to check the leds on the front of the drive, switch first to remote control (otherwise a fault is generated) before removing the panel and verifying that the red led is not lit and the green led is lit but not blinking. assistant control panel: check that there are no faults or alarms shown on the display and that the panel led is green and does not blink. the drive is now ready for use. loc par fwd 2203 loc par fwd 9902
start-up, control with i/o and id run 51 how to perform the guided start-up to be able to perform the guided start-up, you need the assistant control panel. before you start, ensure that you have the motor nameplate data on hand. safety the start-up may only be carried out by a qualified electrician. the safety instructions given in chapter safety must be followed during the start-up procedure. check the installation. see the checklist in chapter installation checklist . check that the starting of the motor does not cause any danger. de-couple the driven machine if: ? there is a risk of damage in case of incorrect direction of rotation, or ? an id run needs to be performed during the drive start-up. id run is essential only in applications that require the ultimate in motor control accuracy. power-up apply input power. the control panel first asks if you want to use the start-up assistant. ? press (when is highlighted) to run the start-up assistant. ? press if you do not want to run the start-up assistant. ? press key to highlight and then press if you want to make the panel ask (or not ask) the question about running the start-up assistant again the next time you switch on the power to the drive. selecting the language if you decided to run the start-up assistant, the display then asks you to select the language. scroll to the desired language with keys / and press to accept. if you press , the start-up assistant is stopped. starting the guided set-up the start-up assistant now guides you through the set-up tasks, starting with the motor set-up. set the motor data to exactly the same value as on the motor nameplate. scroll to the desired parameter value with keys / and press to accept and continue with the start-up assistant. note: at any time, if you press , the start-up assistant is stopped and the display goes to the output mode. ok yes exit do you want to use the start-up assistant? yes no exit ok 00:00 choice rem no ok show start-up assistant on next boot? yes no exit ok 00:00 choice rem save exit 9901 language par edit english exit save 00:00 [0] rem save exit 9905 motor nom volt par edit 220 v exit save 00:00 rem
start-up, control with i/o and id run 52 after completing a set-up task, the start-up assistant suggests the next one. ? press (when is highlighted) to continue with the suggested task. ? press key to highlight and then press to move to the following task without doing the suggested task. ? press to stop the start-up assistant. saving a user macro and final check the start-up is now completed. however, it might be useful at this stage to set the parameters required by your application and save the settings as a user macro as instructed in section user macros on page 94 . after the whole set-up is completed, check there are no faults or alarms shown on the display and the panel led is green and does not blink. the drive is now ready for use. ok continue skip ok exit do you want to continue with application setup? continue skip exit ok 00:00 choice rem
start-up, control with i/o and id run 53 how to control the drive through the i/o interface the table below instructs how to operate the drive through the digital and analog inputs when: ? the motor start-up is performed, and ? the default (standard) parameter settings are valid. displays of the basic control panel are shown as an example. preliminary settings if you need to change the direction of rotation, check that parameter 1003 is set to 3 (request). ensure that the control connections are wired according to the connection diagram given for the abb standard macro. see section abb standard macro on page 87 . ensure that the drive is in remote control. press key to switch between remote and local control. in remote control, the panel display shows text rem. starting and controlling the speed of the motor start by switching digital input di1 on. basic control panel: text fwd starts flashing fast and stops after the setpoint is reached assistant control panel: the arrow starts rotating. it is dotted until the setpoint is reached. regulate the drive output frequency (motor speed) by adjusting the voltage of analog input ai1. changing the direction of rotation of the motor reverse direction: switch digital input di2 on. forward direction: switch digital input di2 off. stopping the motor switch digital input di1 off. the motor stops. basic control panel: text fwd starts flashing slowly. assistant control panel: the arrow stops rotating. loc rem rem hz output fwd 00 . rem hz output fwd 500 . rem hz output rev 500 . rem hz output fwd 500 . rem hz output fwd 00 .
start-up, control with i/o and id run 54 how to perform the id run the drive estimates motor characteristics automatically when the drive is started for the first time and after any motor parameter (group 99 start-up data ) is changed. this is valid when parameter 9910 id run has value 0 (off/idmagn). in most applications there is no need to perform a separate id run. the id run should be selected if: ? vector control mode is used [parameter 9904 = 1 (vector:speed) or 2 (vector:torq)], and ? operation point is near zero speed and/or ? operation at torque range above the motor nominal torque, over a wide speed range, and without any measured speed feedback (i.e without a pulse encoder) is needed. note: if motor parameters (group 99 start-up data ) are changed after the id run, it must be repeated. id run procedure the general parameter setting procedure is not repeated here. for basic control panel, see page 63 and for assistant control panel, see page 74 in chapter control panels . the id run cannot be performed without a control panel. pre-check warning! the motor will run at up to approximately 50?80% of the nominal speed during the id run. the motor will rotate in the forward direction. ensure that it is safe to run the motor before performing the id run! de-couple the motor from the driven equipment. if parameter values (group 01 operating data to group 98 options ) are changed before the id run, check that the new settings meet the following conditions: 2001 minimum speed < 0 rpm 2002 maximum speed > 80% of the motor rated speed 2003 maximum current > i 2n 2017 max torque 1 > 50% or 2018 max torque 2 > 50%, depending on which limit is in use according to parameter 2014 max torque sel check that the run enable signal is on (parameter 1601 ). ensure that the panel is in local control (loc shown on the left / at the top). press key to switch between local and remote control. loc rem
start-up, control with i/o and id run 55 id run with the basic control panel change parameter 9910 id run to 1 (on). save the new setting by pressing . if you want to monitor actual values during the id run, go to the output mode by pressing repeatedly until you get there. press to start the id run. the panel keeps switching between the display that was shown when you started the id run and the alarm display presented on the right. in general, it is recommended not to press any control panel keys during the id run. however, you can stop the id run at any time by pressing . after the id run is completed, the alarm display is not shown any more. if the id run fails, the fault display presented on the right is shown. id run with the assistant control panel change parameter 9910 id run to 1 (on). save the new setting by pressing . if you want to monitor actual values during the id run, go to the output mode by pressing repeatedly until you get there. press to start the id run. the panel keeps switching between the display that was shown when you started the id run and the alarm display presented on the right. in general, it is recommended not to press any control panel keys during the id run. however, you can stop the id run at any time by pressing . after the id run is completed, the alarm display is not shown any more. if the id run fails, the fault display presented on the right is shown. loc par fwd 9910 loc par set fwd 1 loc hz output fwd 00 . loc fwd a2019 loc fwd f0011 save 9910 id run par edit on cancel save 00:00 [1] loc exit 0 a 0 hz 0 % 0. 0. 0. 50.0hz loc dir menu 00:00 00:00 id run alarm loc alarm 2019 00:00 id run fail fault loc fault 11
start-up, control with i/o and id run 56
control panels 57 control panels what this chapter contains the chapter describes the control panel keys, led indicators and display fields. it also instructs in using the panel in control, monitoring and changing the settings. about control panels use a control panel to control the acs350, read status data, and adjust parameters. the acs350 works with either of two different control panel types: ? basic control panel ? this panel (described below) provides basic tools for manual entry of parameter values. ? assistant control panel ? this panel (described in section assistant control panel on page 67 ) includes pre-programmed assistants to automate the most common parameter setups. the panel provides language support. it is available with different language sets. compatibility the manual is compatible with the following versions: ? basic control panel: acs-cp-c rev. k ? assistant control panel (area 1): acs-cp-a rev. y ? assistant control panel (area 2): acs-cp-l rev. e ? assistant control panel (asia): acs-cp-d rev. m see page 70 for how to find out the version of your assistant control panel. see parameter 9901 language to see the languages supported by the different assistant control panels.
control panels 58 basic control panel features the basic control panel features: ? numeric control panel with an lcd display ? copy function ? parameters can be copied to the control panel memory for later transfer to other drives or for backup of a particular system. overview the following table summarizes the key functions and displays on the basic control panel. no. use 1 lcd display ? divided into five areas: a. upper left ? control location: loc: drive control is local, that is, from the control panel rem: drive control is remote, such as the drive i/o or fieldbus. b. upper right ? unit of the displayed value. c. center ? variable; in general, shows parameter and signal values, menus or lists. shows also fault and alarm codes. d. lower left and center ? panel operation state: output: output mode par: parameter mode menu: main menu. : fault mode. e. lower right ? indicators: fwd (forward) / rev (reverse): direction of the motor rotation flashing slowly: stopped flashing rapidly: running, not at setpoint steady: running, at setpoint : displayed value can be modified (in the parameter and reference modes). 2 reset/exit ? exits to the next higher menu level without saving changed values. resets faults in the output and fault modes. 3 menu/enter ? enters deeper into menu level. in the parameter mode, saves the displayed value as the new setting. 4up ? ? scrolls up through a menu or list. ? increases a value if a parameter is selected. ? increases the reference value in the reference mode. holding the key down changes the value faster. 5 down ? ? scrolls down through a menu or list. ? decreases a value if a parameter is selected. ? decreases the reference value in the reference mode. holding the key down changes the value faster. 6 loc/rem ? changes between local and remote control of the drive. 7 dir ? changes the direction of the motor rotation. 8 stop ? stops the drive in local control. 9 start ? starts the drive in local control. fault set reset exit menu enter 2 3 4 5 6 7 8 9 1c loc a o u t p u t f w d 1 1 . 1b 1e 1a 1d
control panels 59 operation you operate the control panel with the help of menus and keys. you select an option, e.g. operation mode or parameter, by scrolling the and arrow keys until the option is visible in the display and then pressing the key. with the key, you return to the previous operation level without saving the made changes. the basic control panel has five panel modes: output, reference, parameter, copy and fault. the operation in the first four modes is described in this chapter. when a fault or alarm occurs, the panel goes automatically to the fault mode showing the fault or alarm code. you can reset the fault or alarm in the output or fault mode (see chapter fault tracing ). after the power is switched on, the panel is in the output mode, where you can start, stop, change the direction, switch between local and remote control and monitor up to three actual values (one at a time). to do other tasks, go first to the main menu and select the appropriate mode. how to do common tasks the table below lists common tasks, the mode in which you can perform them and the page number where the steps to do the task are described in detail. task mode page how to switch between local and remote control any 60 how to start and stop the drive any 60 how to change the direction of the motor rotation any 60 how to browse the monitored signals output 61 how to set the speed, frequency or torque reference reference 62 how to change the value of a parameter parameter 63 how to select the monitored signals parameter 64 how to reset faults and alarms output, fault 273 how to copy parameters from the drive to the control panel copy 66 how to restore parameters from the control panel to the drive copy 66 rem hz output fwd 491 . rem menu fwd par
control panels 60 how to start, stop and switch between local and remote control you can start, stop and switch between local and remote control in any mode. to be able to start or stop the drive, the drive must be in local control. how to change the direction of the motor rotation you can change the direction of the motor rotation in any mode. step action display 1. ? to switch between remote control (rem shown on the left) and local control (loc shown on the left), press . note: switching to local control can be disabled with parameter 1606 local lock. after pressing the key, the display briefly shows message ?loc? or ?re?, as appropriate, before returning to the previous display. the very first time the drive is powered up, it is in remote control (rem) and controlled through the drive i/o terminals. to switch to local control (loc) and control the drive using the control panel, press . the result depends on how long you press the key: ?if you release the key immediately (the display flashes ?loc?), the drive stops. set the local control reference as instructed on page 62 . ?if you press the key for about two seconds (release when the display changes from ?loc? to ?loc r?), the drive continues as before. the drive copies the current remote values for the run/stop status and the reference, and uses them as the initial local control settings. ? to stop the drive in local control, press . text fwd or rev on the bottom line starts flashing slowly. ? to start the drive in local control, press . text fwd or rev on the bottom line starts flashing rapidly. it stops flashing when the drive reaches the setpoint. step action display 1. if the drive is in remote control (rem shown on the left), switch to local control by pressing . the display briefly shows message ?loc? before returning to the previous display. 2. to change the direction from forward (fwd shown at the bottom) to reverse (rev shown at the bottom), or vice versa, press . note : parameter 1003 direction must be set to 3 (request). loc rem loc hz output fwd 491 . loc fwd loc loc rem loc rem loc hz output fwd 491 . loc hz output rev 491 .
control panels 61 output mode in the output mode, you can: ? monitor actual values of up to three group 01 operating data signals, one signal at a time ? start, stop, change the direction and switch between local and remote control. you get to the output mode by pressing until the display shows text output at the bottom. the display shows the value of one group 01 operating data signal. the unit is shown on the right. page 64 tells how to select up to three signals to be monitored in the output mode. the table below shows how to view them one at a time. how to browse the monitored signals step action display 1. if more than one signals have been selected to be monitored (see page 64 ), you can browse them in the output mode. to browse the signals forward, press key repeatedly. to browse them backward, press key repeatedly. rem hz output fwd 491 . rem hz output fwd 491 . a rem output fwd 05 . rem % output fwd 107 .
control panels 62 reference mode in the reference mode, you can: ? set the speed, frequency or torque reference ? start, stop, change the direction and switch between local and remote control. how to set the speed, frequency or torque reference step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you see menu at the bottom. 2. if the drive is in remote control (rem shown on the left), switch to local control by pressing . the display briefly shows ?loc? before switching to local control. note : with group 11 reference select , you can allow the reference modification in remote control (rem). 3. if the panel is not in the reference mode (?ref? not visible), press key or until you see ?ref? and then press . now the display shows the current reference value with under the value. 4. ? to increase the reference value, press . ? to decrease the reference value, press . the value changes immediately when you press the key. it is stored in the drive permanent memory and restored automatically after power switch-off. rem menu fwd par loc rem loc menu fwd par set loc menu fwd ref loc hz set fwd 491 . loc hz set fwd 500 .
control panels 63 parameter mode in the parameter mode, you can: ? view and change parameter values ? select and modify the signals shown in the output mode ? start, stop, change the direction and switch between local and remote control. how to select a parameter and change its value step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you see menu at the bottom. 2. if the panel is not in the parameter mode (?par? not visible), press key or until you see ?par? and then press . the display shows the number of one of the parameter groups. 3. use keys and to find the desired parameter group. 4. press . the display shows one of the parameters in the selected group. 5. use keys and to find the desired parameter. 6. press and hold for about two seconds until the display shows the value of the parameter with underneath indicating that changing of the value is now possible. note: when is visible, pressing keys and simultaneously changes the displayed value to the default value of the parameter. 7. use keys and to select the parameter value. when you have changed the parameter value, starts flashing. ? to save the displayed parameter value, press . ? to cancel the new value and keep the original, press . loc menu fwd ref loc menu fwd par loc par fwd -01- loc par fwd -11- loc par fwd 1101 loc par fwd 1103 set set loc par set fwd 1 set loc par set fwd 2 loc par fwd 1103
control panels 64 how to select the monitored signals step action display 1. you can select which signals are monitored in the output mode and how they are displayed with group 34 panel display parameters. see page 63 for detailed instructions on changing parameter values. by default, the display shows three signals. the particular default signals depend on the value of parameter 9902 applic macro: for macros whose default value of parameter 9904 motor ctrl mode is 1 (vector:speed), the default for signal 1 is 0102 speed, otherwise 0103 output freq. the defaults for signals 2 and 3 are always 0104 current and 0105 torque, respectively. to change the default signals, select up to three signals from group 01 operating data to be shown. signal 1: change the value of parameter 3401 signal1 param to the index of the signal parameter in group 01 operating data (= number of the parameter without the leading zero), e.g. 105 means parameter 0105 torque. value 100 means that no signal is displayed. repeat for signals 2 ( 3408 signal2 param) and 3 ( 3415 signal3 param). for example, if 3401 = 0 and 3415 = 0, browsing is disabled and only the signal specified by 3408 appears in the display. if all three parameters are set to 0, i.e. no signals are selected for monitoring, the panel displays text ?n.a?. 2. specify the decimal point location, or use the decimal point location and unit of the source signal [setting (9 (direct)]. bar graphs are not available for basic operation panel. for details, see parameter 3404 . signal 1: parameter 3404 output1 dsp form signal 2: parameter 3411 output2 dsp form signal 3: parameter 3418 output3 dsp form. 3. select the units to be displayed for the signals. this has no effect if parameter 3404 / 3411 / 3418 is set to 9 (direct). for details, see parameter 3405 . signal 1: parameter 3405 output1 unit signal 2: parameter 3412 output2 unit signal 3: parameter 3419 output3 unit. 4. select the scalings for the signals by specifying the minimum and maximum display values. this has no effect if parameter 3404 / 3411 / 3418 is set to 9 (direct). for details, see parameters 3406 and 3407 . signal 1: parameters 3406 output1 min and 3407 output1 max signal 2: parameters 3413 output2 min and 3414 output2 max signal 3: parameters 3420 output3 min and 3421 output3 max. loc par set fwd 103 loc par set fwd 104 loc par set fwd 105 loc par set fwd 9 loc par set fwd 3 loc hz par set fwd 00 . loc hz par set fwd 5000 .
control panels 65 copy mode the basic control panel can store a full set of drive parameters and up to three user sets of drive parameters to the control panel. the control panel memory is non- volatile. in the copy mode, you can do the following: ? copy all parameters from the drive to the control panel (ul ? upload). this includes all defined user sets of parameters and internal (not adjustable by the user) parameters such as those created by the id run. ? restore the full parameter set from the control panel to the drive (dl a ? download all). this writes all parameters, including the internal non-user- adjustable motor parameters, to the drive. it does not include the user sets of parameters. note: only use this function to restore a drive, or to transfer parameters to systems that are identical to the original system. ? copy a partial parameter set from the control panel to a drive (dl p ? download partial). the partial set does not include user sets, internal motor parameters, parameters 9905 ? 9909 , 1605 , 1607 , 5201 , nor any group 51 ext comm module and 53 efb protocol parameters. the source and target drives and their motor sizes do not need to be the same. ? copy user s1 parameters from the control panel to the drive (dl u1 ? download user set 1). a user set includes group 99 start-up data parameters and the internal motor parameters. the function is only shown on the menu when user set 1 has been first saved using parameter 9902 applic macro (see section user macros on page 94 ) and then uploaded to panel. ? copy user s2 parameters from the control panel to the drive (dl u2 ? download user set 2). as dl u1 ? download user set 1 above. ? copy user s3 parameters from the control panel to the drive (dl u3 ? download user set 3). as dl u1 ? download user set 1 above. ? start, stop, change the direction and switch between local and remote control.
control panels 66 how to upload and download parameters for the upload and download functions available, see above. basic control panel alarm codes in addition to the faults and alarms generated by the drive (see chapter fault tracing ), the basic control panel indicates control panel alarms with a code of the form a5xxx. see section alarms generated by the basic control panel on page 276 for a list of the alarm codes and descriptions. step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you see menu at the bottom. 2. if the panel is not in the copy mode (?copy? not visible), press key or until you see ?copy?. press . 3. ? to upload all parameters (including user sets) from the drive to the control panel, step to ?ul? with keys and . press . during the transfer, the display shows the transfer status as a percentage of completion. ? to perform downloads, step to the appropriate operation ( here ?dl a?, download all, is used as an example) with keys and . press . during the transfer, the display shows the transfer status as a percentage of completion. loc menu fwd par loc menu fwd copy loc menu fwd ul loc menu fwd ul loc % fwd ul 50 loc menu fwd dl a loc % fwd dl 50
control panels 67 assistant control panel features the assistant control panel features: ? alphanumeric control panel with an lcd display ? language selection for the display ? start-up assistant to ease drive commissioning ? copy function ? parameters can be copied to the control panel memory for later transfer to other drives or for backup of a particular system. ? context sensitive help ? real time clock. overview the following table summarizes the key functions and displays on the assistant control panel. loc dir 12:45 menu 400rpm 1200 rpm 12.4 a 405 dm3/s 3 4 5 6 7 8 9 10 no. use 1 status led ? green for normal operation. if led is flashing, or red, see section leds on page 287 . 2 lcd display ? divided into three main areas: a. status line ? variable, depending on the mode of operation, see section status line on page 68 . b. center ? variable; in general, shows signal and parameter values, menus or lists. shows also faults and alarms. c. bottom line ? shows current functions of the two soft keys and, if enabled, the clock display. 3 soft key 1 ? function depends on the context. the text in the lower left corner of the lcd display indicates the function. 4 soft key 2 ? function depends on the context. the text in the lower right corner of the lcd display indicates the function. 5up ? ? scrolls up through a menu or list displayed in the center of the lcd display. ? increments a value if a parameter is selected. ? increments the reference value if the upper right corner is highlighted. holding the key down changes the value faster. 6 down ? ? scrolls down through a menu or list displayed in the center of the lcd display. ? decrements a value if a parameter is selected. ? decrements the reference value if the upper right corner is highlighted. holding the key down changes the value faster. 7 loc/rem ? changes between local and remote control of the drive. 8 help ? displays context sensitive information when the key is pressed. the information displayed describes the item currently highlighted in the center of the display. 9 stop ? stops the drive in local control. 10 start ? starts the drive in local control. 5 a 1 hz 7 % 10 . 0 . 49 . 49.1hz loc dir menu 00:00 1 2a 2b 2c
control panels 68 status line the top line of the lcd display shows the basic status information of the drive. operation you operate the control panel with menus and keys. the keys include two context- sensitive soft keys, whose current function is indicated by the text shown in the display above each key. you select an option, e.g. operation mode or parameter, by scrolling the and arrow keys until the option is highlighted (in reverse video) and then pressing the relevant soft key. with the right soft key you usually enter a mode, accept an option or save the changes. the left soft key is used to cancel the made changes and return to the previous operation level. the assistant control panel has nine panel modes: output, parameters, assistants, changed parameters, fault logger, time and date, parameter backup, i/o settings and fault. the operation in the first eight modes is described in this chapter. when a fault or alarm occurs, the panel goes automatically to the fault mode showing the fault or alarm. you can reset it in the output or fault mode (see chapter fault tracing ). no. field alternatives significance 1 control location loc drive control is local, that is, from the control panel. rem drive control is remote, such as the drive i/o or fieldbus. 2 state forward shaft direction reverse shaft direction rotating arrow drive is running at setpoint. dotted rotating arrow drive is running but not at setpoint. stationary arrow drive is stopped. dotted stationary arrow start command is present, but the motor is not running, e.g. because start enable is missing. 3 panel operation mode ? name of the current mode ? name of the list or menu shown ? name of the operation state, e.g. par edit. 4 reference value or number of the selected item ? reference value in the output mode ? number of the highlighted item, e.g mode, parameter group or fault. 49.1hz loc 1 2 4 loc main menu 1 1 2 3 4
control panels 69 initially, the panel is in the output mode, where you can start, stop, change the direction, switch between local and remote control, modify the reference value and monitor up to three actual values. to do other tasks, go first to the main menu and select the appropriate mode on the menu. the status line (see section status line on page 68 ) shows the name of the current menu, mode, item or state. how to do common tasks the table below lists common tasks, the mode in which you can perform them and the page number where the steps to do the task are described in detail. task mode page how to get help any 70 how to find out the panel version at power up 70 how to adjust the display contrast output 73 how to switch between local and remote control any 71 how to start and stop the drive any 72 how to change the direction of the motor rotation output 72 how to set the speed, frequency or torque reference output 73 how to change the value of a parameter parameters 74 how to select the monitored signals parameters 75 how to do guided tasks (specification of related parameter sets) with assistants assistants 76 how to view and edit changed parameters changed parameters 77 how to view faults fault logger 78 how to reset faults and alarms output, fault 273 how to show/hide the clock, change date and time formats, set the clock and enable/disable automatic clock transitions according to the daylight saving changes time and date 79 how to copy parameters from the drive to the control panel parameter backup 82 how to restore parameters from the control panel to the drive parameter backup 82 how to view backup information parameter backup 83 how to edit and change parameter settings related to i/o terminals i/o settings 84 parameters assistants changed par exit enter 00:00 main menu 1 loc 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00
control panels 70 how to get help how to find out the panel version step action display 1. press to read the context-sensitive help text for the item that is highlighted. if help text exists for the item, it is shown on the display. 2. if the whole text is not visible, scroll the lines with keys and . 3. after reading the text, return to the previous display by pressing . step action display 1. if the power is switched on, switch it off. 2. keep key pressed down while you switch on the power and read the information. the display shows the following panel information: panel fw: panel firmware version rom crc: panel rom check sum flash rev: flash content version flash content comment. when you release the key, the panel goes to the output mode. ? 01 operating data 03 fb actual signals 04 fault history 10 start/stop/dir 11 reference select par groups 10 exit sel 00:00 loc exit 00:00 this group defines external sources (ext1 and ext2) for commands that enable start, stop and help loc exit 00:00 external sources (ext1 and ext2) for commands that enable start, stop and direction changes. help loc exit 01 operating data 03 fb actual signals 04 fault history 10 start/stop/dir 11 reference select par groups 10 exit sel 00:00 loc ? ? panel fw: x.xx rom crc: xxxxxxxxxx flash rev: x.xx xxxxxxxxxxxxxxxxxxxxx panel version info
control panels 71 how to start, stop and switch between local and remote control you can start, stop and switch between local and remote control in any mode. to be able to start or stop the drive, the drive must be in local control. step action display 1. ? to switch between remote control (rem shown on the status line) and local control (loc shown on the status line), press . note: switching to local control can be disabled with parameter 1606 local lock. the very first time the drive is powered up, it is in remote control (rem) and controlled through the drive i/o terminals. to switch to local control (loc) and control the drive using the control panel, press . the result depends on how long you press the key: ?if you release the key immediately (the display flashes ?switching to the local control mode?), the drive stops. set the local control reference as instructed on page 73 . ?if you press the key for about two seconds, the drive continues as before. the drive copies the current remote values for the run/stop status and the reference, and uses them as the initial local control settings. ? to stop the drive in local control, press . the arrow ( or ) on the status line stops rotating. ? to start the drive in local control, press . the arrow ( or ) on the status line starts rotating. it is dotted until the drive reaches the setpoint. loc rem 00:00 switching to the local control mode. message loc loc rem
control panels 72 output mode in the output mode, you can: ? monitor actual values of up to three signals in group 01 operating data ? change the direction of the motor rotation ? set the speed, frequency or torque reference ? adjust the display contrast ? start, stop, change the direction and switch between local and remote control. you get to the output mode by pressing repeatedly. the top right corner of the display shows the reference value. the center can be configured to show up to three signal values or bar graphs; see page 75 for instructions on selecting and modifying the monitored signals. how to change the direction of the motor rotation step action display 1. if you are not in the output mode, press repeatedly until you get there. 2. if the drive is in remote control (rem shown on the status line), switch to local control by pressing . the display briefly shows a message about changing the mode and then returns to the output mode. 3. to change the direction from forward ( shown on the status line) to reverse ( shown on the status line), or vice versa, press . note : parameter 1003 direction must be set to 3 (request). exit 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00 4 a 4 % 24. 0. 5.0hz loc dir menu 00:00 hz 50% exit 5 a 1 hz 7 % 10. 0. 49. 49.1hz rem dir menu 00:00 loc rem 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00 dir
control panels 73 how to set the speed, frequency or torque reference how to adjust the display contrast step action display 1. if you are not in the output mode, press repeatedly until you get there. 2. if the drive is in remote control (rem shown on the status line), switch to local control by pressing . the display briefly shows a message about changing the mode and then returns to the output mode. note : with group 11 reference select , you can allow the reference modification in remote control. 3. ? to increase the highlighted reference value shown in the top right corner of the display, press . the value changes immediately. it is stored in the drive permanent memory and restored automatically after power switch-off. ? to decrease the value, press . step action display 1. if you are not in the output mode, press repeatedly until you get there. 2. ? to increase the contrast, press keys and simultaneously. ? to decrease the contrast, press keys and simultaneously. exit 5 a 1 hz 7 % 10. 0. 49. 49.1hz rem dir menu 00:00 loc rem 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00 5 a 0 hz 7 % 10. 0. 50. 50.0hz loc dir menu 00:00 exit 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00 menu menu 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00
control panels 74 parameters mode in the parameters mode, you can: ? view and change parameter values ? start, stop, change the direction and switch between local and remote control. how to select a parameter and change its value step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the parameters mode by selecting parameters on the menu with keys and , and pressing . 3. select the appropriate parameter group with keys and . press . 4. select the appropriate parameter with keys and . the current value of the parameter is shown below the selected parameter. press . 5. specify a new value for the parameter with keys and . pressing the key once increments or decrements the value. holding the key down changes the value faster. pressing the keys simultaneously replaces the displayed value with the default value. 6. ? to save the new value, press . ? to cancel the new value and keep the original, press . menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter 01 operating data 03 fb actual signals 04 fault history 10 start/stop/dir 11 reference select exit sel 00:00 par groups 01 loc 99 start-up data 01 operating data 03 fb actual signals 04 fault history 10 start/stop/dir exit sel 00:00 par groups 99 loc sel 9901 language english 9902 applic macro 9904 motor ctrl mode 9905 motor nom volt parameters exit edit 00:00 loc 9901 language 9902 applic macro abb standard 9904 motor ctrl mode 9905 motor nom volt parameters exit edit 00:00 loc edit 9902 applic macro par edit abb standard cancel save 00:00 [1] loc 9902 applic macro par edit 3-wire cancel save 00:00 [2] loc save cancel 9901 language 9902 applic macro 3-wire 9904 motor ctrl mode 9905 motor nom volt parameters exit edit 00:00 loc
control panels 75 how to select the monitored signals step action display 1. you can select which signals are monitored in the output mode and how they are displayed with group 34 panel display parameters. see page 74 for detailed instructions on changing parameter values. by default, the display shows three signals. the particular default signals depend on the value of parameter 9902 applic macro: for macros whose default value of parameter 9904 motor ctrl mode is 1 (vector:speed), the default for signal 1 is 0102 speed, otherwise 0103 output freq. the defaults for signals 2 and 3 are always 0104 current and 0105 torque, respectively. to change the default signals, select up to three signals from group 01 operating data to be shown. signal 1: change the value of parameter 3401 signal1 param to the index of the signal parameter in group 01 operating data (= number of the parameter without the leading zero), e.g. 105 means parameter 0105 torque. value 0 means that no signal is displayed. repeat for signals 2 ( 3408 signal2 param) and 3 ( 3415 signal3 param). 2. select how you want the signals to be displayed: as a decimal number or a bar graph. for decimal numbers, you can specify the decimal point location, or use the decimal point location and unit of the source signal [setting (9 (direct)]. for details, see parameter 3404 . signal 1: parameter 3404 output1 dsp form signal 2: parameter 3411 output2 dsp form signal 3: parameter 3418 output3 dsp form. 3. select the units to be displayed for the signals. this has no effect if parameter 3404 / 3411 / 3418 is set to 9 (direct). for details, see parameter 3405 . signal 1: parameter 3405 output1 unit signal 2: parameter 3412 output2 unit signal 3: parameter 3419 output3 unit. 4. select the scalings for the signals by specifying the minimum and maximum display values. this has no effect if parameter 3404 / 3411 / 3418 is set to 9 (direct). for details, see parameters 3406 and 3407 . signal 1: parameters 3406 output1 min and 3407 output1 max signal 2: parameters 3413 output2 min and 3414 output2 max signal 3: parameters 3420 output3 min and 3421 output3 max. 3401 signal1 param par edit output freq cancel save 00:00 [103] loc 3408 signal2 param par edit current cancel save 00:00 [104] loc 3415 signal3 param par edit torque cancel save 00:00 [105] loc 3404 output1 dsp form par edit direct cancel save 00:00 [9] loc 3405 output1 unit par edit hz cancel save 00:00 [3] loc 3406 output1 min par edit 0.0 hz cancel save 00:00 loc 3407 output1 max par edit 500.0 hz cancel save 00:00 loc
control panels 76 assistants mode when the drive is first powered up, the start-up assistant guides you through the setup of the basic parameters. the start-up assistant is divided into assistants, each of which is responsible for the specification of a related parameter set, for example motor set-up or pid control. the start-up assistant activates the assistants one after the other. you may also use the assistants independently. for more information on the tasks of the assistants, see section start-up assistant on page 95 . in the assistants mode, you can: ? use assistants to guide you through the specification of a set of basic parameters ? start, stop, change the direction and switch between local and remote control. how to use an assistant the table below shows the basic operation sequence which leads you through assistants. the motor set-up assistant is used as an example. step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the assistants mode by selecting assistants on the menu with keys and , and pressing . 3. select the assistant with keys and , and press . if you select any other assistant than the start-up assistant, it guides you through the task of specification of its parameter set as shown in steps 4. and 5. below. after that you can select another assistant on the assistants menu or exit the assistants mode. the motor set-up assistant is used here as an example. if you select the start-up assistant, it activates the first assistant, which guides you through the task of specification of its parameter set as shown in steps 4. and 5. below. the start-up assistant then asks if you want to continue with the next assistant or skip it ? select the appropriate answer with keys and , and press . if you choose to skip, the start-up assistant asks the same question about the next assistant, and so on. 4. ? to specify a new value, press keys and . ? to ask for information on the requested parameter, press key . scroll the help text with keys and . close the help by pressing . menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter start-up assistant motor set-up application speed control ext1 speed control ext2 exit sel 00:00 assistants 1 loc sel 9905 motor nom volt par edit 220 v exit save 00:00 loc sel do you want to continue with application setup? continue skip exit ok 00:00 choice loc 9905 motor nom volt par edit 240 v exit save 00:00 loc ? exit exit 00:00 set as given on the motor nameplate. voltage value must correspond to motor d/y connection. help loc
control panels 77 changed parameters mode in the changed parameters mode, you can: ? view a list of all parameters that have been changed from the macro default values ? change these parameters ? start, stop, change the direction and switch between local and remote control. how to view and edit changed parameters 5. ? to accept the new value and continue to the setting of the next parameter, press . ? to stop the assistant, press . step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the changed parameters mode by selecting changed par on the menu with keys and , and pressing . 3. select the changed parameter on the list with keys and . the value of the selected parameter is shown below it. press to modify the value. 4. specify a new value for the parameter with keys and . pressing the key once increments or decrements the value. holding the key down changes the value faster. pressing the keys simultaneously replaces the displayed value with the default value. 5. ? to accept the new value, press . if the new value is the default value, the parameter is removed from the list of changed parameters. ? to cancel the new value and keep the original, press . step action display save exit 9906 motor nom curr par edit 1.2 a exit save 00:00 loc menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter 1202 const speed 1 10.0 hz 1203 const speed 2 1204 const speed 3 9902 applic macro changed par exit edit 00:00 loc edit 1202 const speed 1 par edit 10.0 hz cancel save 00:00 loc 1202 const speed 1 par edit 15.0 hz cancel save 00:00 loc save cancel 1202 const speed 1 15.0 hz 1203 const speed 2 1204 const speed 3 9902 applic macro changed par exit edit 00:00 loc
control panels 78 fault logger mode in the fault logger mode, you can: ? view the drive fault history of maximum ten faults (after a power off, only the three latest faults are kept in the memory) ? see the details of the three latest faults (after a power off, the details of only the most recent fault is kept in the memory) ? read the help text for the fault ? start, stop, change the direction and switch between local and remote control. how to view faults step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the fault logger mode by selecting fault logger on the menu with keys and , and pressing . the display shows the fault log starting with the latest fault. the number on the row is the fault code according to which the causes and corrective actions are listed in chapter fault tracing . 3. to see the details of a fault, select it with keys and , and press . 4. to show the help text, press . scroll the help text with keys and . after reading the help, press to return to the previous display. menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter 10: panel loss 19.03.05 13:04:57 6: dc undervolt 6: ai1 loss fault log exit detail 00:00 loc detail fault 10 fault time 1 13:04:57 fault time 2 panel loss exit diag 00:00 loc diag ok exit ok 00:00 check: comm lines and connections, parameter 3002, parameters in groups 10 and 11. diagnostics loc
control panels 79 time and date mode in the time and date mode, you can: ? show or hide the clock ? change date and time display formats ? set the date and time ? enable or disable automatic clock transitions according to the daylight saving changes ? start, stop, change the direction and switch between local and remote control. the assistant control panel contains a battery to ensure the function of the clock when the panel is not powered by the drive. how to show or hide the clock, change display formats, set the date and time and enable or disable clock transitions due to daylight saving changes step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the time and date mode by selecting time & date on the menu with keys and , and pressing . 3. ? to show (hide) the clock, select clock visiblility on the menu, press , select show clock (hide clock) and press , or, if you want to return to the previous display without making changes, press . ? to specify the date format, select date format on the menu, press and select a suitable format. press to save or to cancel your changes. ? to specify the time format, select time format on the menu, press and select a suitable format. press to save or to cancel your changes. ? to set the time, select set time on the menu and press . specify the hours with keys and , and press .then specify the minutes. press to save or to cancel your changes. menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter clock visibility time format date format set time set date exit sel 00:00 time & date 1 loc sel sel exit show clock hide clock exit sel 00:00 clock visib 1 loc sel ok cancel dd.mm.yy mm/dd/yy dd.mm.yyyy mm/dd/yyyy cancel ok 00:00 date format 1 loc sel ok cancel 24-hour 12-hour cancel ok 00:00 time format 1 loc sel ok ok cancel set time cancel ok 00:00 loc 15 :41
control panels 80 ? to set the date, select set date on the menu and press . specify the first part of the date (day or month depending on the selected date format) with keys and , and press . repeat for the second part. after specifying the year, press . to cancel your changes, press . ? to enable or disable the automatic clock transitions according to the daylight saving changes, select daylight saving on the menu and press . pressing opens the help that shows the beginning and end dates of the period during which daylight saving time is used in each country or area whose daylight saving changes you can select to be followed. ? to disable automatic clock transitions according to the daylight saving changes, select off and press . ? to enable automatic clock transitions, select the country or area whose daylight saving changes are followed and press . ? to return to the previous display without making changes, press . step action display sel ok ok cancel set date cancel ok 00:00 loc 19 .03.05 sel ? sel sel exit off eu us australia1:nsw,vict.. australia2:tasmania.. exit sel 00:00 daylight sav 1 loc exit 00:00 eu: on: mar last sunday off: oct last sunday us: help loc
control panels 81 parameter backup mode the parameter backup mode is used to export parameters from one drive to another or to make a backup of the drive parameters. uploading to the panel stores all drive parameters, including up to three user sets, to the assistant control panel. the full set, partial parameter set (application) and user sets can then be downloaded from the control panel to another drive or the same drive. the control panel memory is non-volatile and does not depend on the panel battery. in the parameter backup mode, you can: ? copy all parameters from the drive to the control panel (upload to panel). this includes all defined user sets of parameters and internal (not adjustable by the user) parameters such as those created by the id run. ? view the information about the backup stored to the control panel with upload to panel (backup info). this includes e.g. the type and rating of the drive where the backup was made. it is useful to check this information when you are going to copy the parameters to another drive with download full set to ensure that the drives match. ? restore the full parameter set from the control panel to the drive (download full set). this writes all parameters, including the internal non-user-adjustable motor parameters, to the drive. it does not include the user sets of parameters. note: only use this function to restore a drive from a backup or to transfer parameters to systems that are identical to the original system. ? copy a partial parameter set (part of the full set) from the control panel to a drive (download application). the partial set does not include user sets, internal motor parameters, parameters 9905 ? 9909 , 1605 , 1607 , 5201 , nor any group 51 ext comm module and 53 efb protocol parameters. the source and target drives and their motor sizes do not need to be the same. ? copy user s1 parameters from the control panel to the drive (download user set1). a user set includes group 99 start-up data parameters and the internal motor parameters. the function is only shown on the menu when user set 1 has been first saved using parameter 9902 applic macro (see section user macros on page 94 ) and then uploaded to the control panel with upload to panel. ? copy user s2 parameters from the control panel to the drive (download user set2). as download user set1 above. ? copy user s3 parameters from the control panel to the drive (download user set3). as download user set1 above. ? start, stop, change the direction and switch between local and remote control.
control panels 82 how to upload and download parameters for the upload and download functions available, see above. step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the par backup mode by selecting par backup on the menu with keys and , and pressing . 3. ? to copy all parameters (including user sets and internal parameters) from the drive to the control panel, select upload to panel on the par backup with keys and , and press . during the transfer, the display shows the transfer status as a percentage of completion. press if you want to stop the operation. after the upload is completed, the display shows a message about the completion. press to return to the par backup. ? to perform downloads, select the appropriate operation ( here download full set is used as an example) on the par backup with keys and , and press . the display shows the transfer status as a percentage of completion. press if you want to stop the operation. after the download is completed, the display shows a message about the completion. press to return to the par backup. menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter upload to panel backup info download full set download application download user set1 exit sel 00:00 par backup 1 loc sel abort abort 00:00 par backup loc 5 0 % copying parameters ok ok 00:00 parameter upload successful message loc sel abort abort 00:00 par backup loc 5 0 % downloading parameters (full set) ok ok 00:00 parameter download successfully completed. message loc
control panels 83 how to view information about the backup step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go to the par backup mode by selecting par backup on the menu with keys and , and pressing . 3. select backup info on the par backup with keys and , and press . the display shows the following information about the drive where the backup was made: drive type: type of the drive drive rating: rating of the drive in format xxxyz, where xxx: nominal current rating. if present an ?a? indicates a decimal point, e.g. 4a6 means 4.6 a. y: 2 = 200 v 4 = 400 v 6 = 600 v z: i = european loading package n = us loading package firmware: firmware version of the drive. you can scroll the information with keys and . 4. press to return to the par backup. menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter upload to panel backup info download full set download application download user set1 exit sel 00:00 par backup 1 loc sel exit 00:00 drive type acs350 3304 drive rating 2 a41i 3301 firmware backup info loc exit 00:00 acs350 3304 drive rating 2 a41i 3301 firmware 241a hex backup info loc exit upload to panel backup info download full set download application download user set1 exit sel 00:00 par backup 1 loc
control panels 84 i/o settings mode in the i/o settings mode, you can: ? check the parameter settings related to any i/o terminal ? edit the parameter setting. for example, if ?1103: ref1? is listed under ain1 (analog input 1), that is, parameter 1103 ref1 select has value ai1, you can change its value to e.g. ai2. you cannot, however, set the value of parameter 1106 ref2 select to ai1. ? start, stop, change the direction and switch between local and remote control. how to edit and change parameter settings related to i/o terminals step action display 1. go to the main menu by pressing if you are in the output mode, otherwise by pressing repeatedly until you get to the main menu. 2. go the i/o settings mode by selecting i/o settings on the menu with keys and , and pressing . 3. select the i/o group, e.g. digital inputs, with keys and , and press . after a brief pause, the display shows the current settings for the selection. 4. select the setting (line with a parameter number) with keys and , and press . 5. specify a new value for the setting with keys and . pressing the key once increments or decrements the value. holding the key down changes the value faster. pressing the keys simultaneously replaces the displayed value with the default value. 6. ? to save the new value, press . ? to cancel the new value and keep the original, press . menu exit parameters assistants changed par exit enter 00:00 main menu 1 loc enter digital inputs (di) analog inputs (ai) relay outputs (rout) analog outputs (aout) panel exit sel 00:00 i/o settings 1 loc sel ?di1? 1001:start/stop (e1) ?di2? ?di3? show i/o 1 loc exit 00:00 edit 1001 ext1 commands par edit di1 cancel save 00:00 [1] loc 1001 ext1 commands par edit di1,2 cancel save 00:00 [2] loc save cancel ?di1? 1001:start/stop (e1) ?di2? 1001:dir (e1) ?di3? exit 00:00 show i/o 1 loc
application macros 85 application macros what this chapter contains the chapter describes the application macros. for each macro, there is a wiring diagram showing the default control connections (digital and analog i/o). the chapter also explains how to save a user macro and how to recall it. overview of macros application macros are preprogrammed parameter sets. while starting up the drive, the user typically selects one of the macros - the one that is best suited for the purpose - with parameter 9902 applic macro, makes the essential changes and saves the result as a user macro. the acs350 has seven standard macros and three user macros. the table below contains a summary of the macros and describes suitable applications. macro suitable applications abb standard ordinary speed control applications where no, one, two or three constant speeds are used. start/stop is controlled with one digital input (level start and stop). it is possible to switch between two acceleration and deceleration times. 3-wire ordinary speed control applications where no, one, two or three constant speeds are used. the drive is started and stopped with push buttons. alternate speed control applications where no, one, two or three constant speeds are used. start, stop and direction are controlled by two digital inputs (combination of the input states determines the operation). motor potentiometer speed control applications where no or one constant speed is used. the speed is controlled by two digital inputs (increase / decrease / keep unchanged). hand/auto speed control applications where switching between two control devices is needed. some control signal terminals are reserved to one device, the rest for the other. one digital input selects between the terminals (devices) in use. pid control process control applications, e.g. different closed loop control systems such as pressure control, level control and flow control. it is possible to switch between process and speed control: some control signal terminals are reserved for process control, others for speed control. one digital input selects between process and speed control. torque control torque control applications. it is possible to switch between torque and speed control: some control signal terminals are reserved to torque control, others for speed control. one digital input selects between torque and speed control. user the user can save the customised standard macro, i.e. the parameter settings including group 99 start-up data , and the results of the motor identification run into the permanent memory, and recall the data at a later time. for example, three user macros can be used when switching between three different motors is required.
application macros 86 summary of i/o connections of application macros the following table gives the summary of the default i/o connections of all application macros. input/output macro abb standard 3-wire alternate motor potentiom. hand/auto pid control torque control ai1 (0?10 v) freq. ref. speed ref. speed ref. - speed ref. (hand) speed ref. (hand) / proc. ref. (pid) speed ref. (speed) ai2 (0?20 ma) - - - - speed ref. (auto) process value torque ref. (torque) ao output freq. speed speed speed speed speed speed di1 stop/start start (pulse) start (fwd) stop/start stop/start (hand) stop/start (hand) stop/start (speed) di2 fwd/rev stop (pulse) start (rev) fwd/rev fwd/rev (hand) hand/pid fwd/rev di3 const. speed input 1 fwd/rev const. speed input 1 speed ref. up hand/auto const. speed 1 speed/torque di4 const. speed input 2 const. speed input 1 const. speed input 2 speed ref. down fwd/rev (auto) run enable const. speed 1 di5 ramp pair selection const. speed input 2 ramp pair selection const. speed 1 stop/start (auto) stop/start (pid) ramp pair selection ro fault (-1) fault (-1) fault (-1) fault (-1) fault (-1) fault (-1) fault (-1) do fault (-1) fault (-1) fault (-1) fault (-1) fault (-1) fault (-1) fault (-1)
application macros 87 abb standard macro this is the default macro. it provides a general purpose i/o configuration with three constant speeds. parameter values are the default values given in chapter actual signals and parameters , starting from page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . default i/o connections max. 500 ohm 1?10 kohm x1a 1 scr signal cable shield (screen) 2ai1 output frequency reference : 0?10 v 1) 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5 ai2 not in use by default. 0?10 v 6 gnd analog input circuit common 7ao output frequency value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 stop (0) / start (1) 13 di2 forward (0) / reverse (1) 14 di3 constant speed selection 2) 15 di4 constant speed selection 2) 16 di5 acceleration and deceleration selection 3) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd 4) 1) ai1 is used as a speed reference if vector mode is selected. 2) see parameter group 12 constant speeds : 3) 0 = ramp times according to parameters 2202 and 2203 . 1 = ramp times according to parameters 2205 and 2206 . 4) 360 degree grounding under a clamp. tightening torque = 0.5 nm / 4.4 lbf. in. di3 di4 operation (parameter) 0 0 set speed through ai1 1 0 speed 1 ( 1202 ) 0 1 speed 2 ( 1203 ) 1 1 speed 3 ( 1204 )
application macros 88 3-wire macro this macro is used when the drive is controlled using momentary push-buttons. it provides three constant speeds. to enable the macro, set the value of parameter 9902 to 2 (3-wire). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . note: when the stop input (di2) is deactivated (no input), the control panel start and stop buttons are disabled. default i/o connections max. 500 ohm 1?10 kohm 2) x1a 1 scr signal cable shield (screen) 2ai1 motor speed reference : 0?10 v 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5 ai2 not in use by default. 0?10 v 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 start (pulse ) 13 di2 stop (pulse ) 14 di3 forward (0) / reverse (1) 15 di4 constant speed selection 1) 16 di5 constant speed selection 1) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd 1) see parameter group 12 constant speeds : 2) 360 degree grounding under a clamp. tightening torque = 0.5 nm / 4.4 lbf. in. di3 di4 operation (parameter) 0 0 set speed through ai1 1 0 speed 1 ( 1202 ) 0 1 speed 2 ( 1203 ) 1 1 speed 3 ( 1204 )
application macros 89 alternate macro this macro provides an i/o configuration adapted to a sequence of di control signals used when alternating the rotation direction of the drive. to enable the macro, set the value of parameter 9902 to 3 (alternate). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . default i/o connections max. 500 ohm 1?10 kohm 3) x1a 1 scr signal cable shield (screen) 2ai1 motor speed reference : 0?10 v 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5 ai2 not in use by default. 0?10 v 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 start forward : if di1 = di2, the drive stops. 13 di2 start reverse 14 di3 constant speed selection 1) 15 di4 constant speed selection 1) 16 di5 acceleration and deceleration selection 2) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd 1) see parameter group 12 constant speeds : 2) 0 = ramp times according to parameters 2202 and 2203 . 1 = ramp times according to parameters 2205 and 2206 . 3) 360 degree grounding under a clamp. tightening torque = 0.5 nm / 4.4 lbf. in. di3 di4 operation (parameter) 0 0 set speed through ai1 1 0 speed 1 ( 1202 ) 0 1 speed 2 ( 1203 ) 1 1 speed 3 ( 1204 )
application macros 90 motor potentiometer macro this macro provides a cost-effective interface for plcs that vary the speed of the drive using only digital signals. to enable the macro, set the value of parameter 9902 to 4 (motor pot). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . default i/o connections max. 500 ohm x1a 1 scr signal cable shield (screen) 2 ai1 not in use by default: 0?10 v 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5 ai2 not in use by default. 0?10 v 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 stop (0) / start (1) 13 di2 forward (0) / reverse (1) 14 di3 speed reference up 1) 15 di4 speed reference down 1) 16 di5 constant speed 1 : parameter 1202 x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd 2) 1) if di3 and di4 are both active or inactive, the speed reference is unchanged. the existing speed reference is stored during stop and power down. 2) 360 degree grounding under a clamp. tightening torque = 0.5 nm / 4.4 lbf. in.
application macros 91 hand/auto macro this macro can be used when switching between two external control devices is needed. to enable the macro, set the value of parameter 9902 to 5 (hand/auto). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . note: parameter 2108 start inhibit must remain in the default setting 0 (off). default i/o connections 1?10 kohm x1a 1 scr signal cable shield (screen) 2ai1 motor speed reference (hand) : 0?10 v 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5ai2 motor speed reference (auto) : 4?20 ma 2) 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 stop (0) / start (1) (hand) 13 di2 forward (0) / reverse (1) (hand) 14 di3 hand (0) / auto (1) control selection 15 di4 forward (0) / reverse (1) (auto) 16 di5 stop (0) / start (1) (auto) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd 1) max. 500 ohm 1) 360 degree grounding under a clamp. 2) the signal source must be powered externally. see the manufacturer?s instructions. an example of a connection using a two-wire sensor is given on page 41 . tightening torque = 0.5 nm / 4.4 lbf. in.
application macros 92 pid control macro this macro provides parameter settings for closed-loop control systems such as pressure control, flow control, etc. control can also be switched to speed control using a digital input. to enable the macro, set the value of parameter 9902 to 6 (pid control). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . note: parameter 2108 start inhibit must remain in the default setting 0 (off). default i/o connections 1?10 kohm 2) x1a 1 scr signal cable shield (screen) 2ai1 motor speed ref. (hand) / process ref. (pid) : 0?10 v 1) 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5ai2 process actual value : 4?20 ma 3) 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 stop (0) / start (1) (hand) 13 di2 hand (0) / pid (1) control selection 14 di3 constant speed 1 : parameter 1202 15 di4 run enable 16 di5 stop (0) / start (1) (pid) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd max. 500 ohm 1) hand: 0?10 v -> speed reference. pid: 0?10 v -> 0?100% pid setpoint. 2) 360 degree grounding under a clamp. 3) the signal source must be powered externally. see the manufacturer?s instructions. an example of a connection using a two-wire sensor is given on page 41 . tightening torque = 0.5 nm / 4.4 lbf. in.
application macros 93 torque control macro this macro provides parameter settings for applications that require torque control of the motor. control can also be switched to speed control using a digital input. to enable the macro, set the value of parameter 9902 to 8 (torque ctrl). for the parameter default values, see section default values with different macros on page 142 . if you use other than the default connections presented below, see section i/o terminals on page 40 . default i/o connections 1?10 kohm 3) x1a 1 scr signal cable shield (screen) 2ai1 motor speed reference (speed) : 0?10 v 3 gnd analog input circuit common 4 +10v reference voltage: +10 vdc, max. 10 ma 5ai2 motor torque reference (torque) : 4?20 ma 4) 6 gnd analog input circuit common 7ao motor speed value : 0?20 ma 8 gnd analog output circuit common 9 +24v auxiliary voltage output: +24 vdc, max. 200 ma 10 gnd auxiliary voltage output common 11 dcom digital input common 12 di1 stop (0) / start (1) (speed) 13 di2 forward (0) / reverse (1) 1) 14 di3 speed (0) / torque (1) control selection 15 di4 constant speed 1 : parameter 1202 16 di5 acceleration and deceleration selection 2) x1b 17 rocom relay output no fault [fault (-1)] 18 ronc 19 rono 20 dosrc digital output, max. 100 ma no fault [fault (-1)] 21 doout 22 dognd max. 500 ohm 1) speed control: changes rotation direction. torque control: changes torque direction. 2) 0 = ramp times according to parameters 2202 and 2203 . 1 = ramp times according to parameters 2205 and 2206 . 3) 360 degree grounding under a clamp. 4) the signal source must be powered externally. see the manufacturer?s instructions. an example of a connection using a two-wire sensor is given on page 41 . tightening torque = 0.5 nm / 4.4 lbf. in.
application macros 94 user macros in addition to the standard application macros, it is possible to create three user macros. the user macro allows the user to save the parameter settings, including group 99 start-up data , and the results of the motor identification into the permanent memory and recall the data at a later time. the panel reference is also saved if the macro is saved and loaded in local control. the remote control setting is saved into the user macro, but the local control setting is not. the steps below show how to create and recall user macro 1. the procedure for the other two user macros is identical, only the parameter 9902 values are different. to create user macro 1: ? adjust the parameters. perform the motor identification if it is needed in the application but it is not done yet. ? save the parameter settings and the results of the motor identification to the permanent memory by changing parameter 9902 to -1 (user s1 save). ? press (assistant control panel) or (basic control panel). to recall user macro 1: ? change parameter 9902 to 0 (user s1 load). ? press (assistant control panel) or (basic control panel) to load. the user macro can also be switched through digital inputs (see parameter 1605 ). note: user macro load restores the parameter settings including group 99 start- up data and the results of the motor identification. check that the settings correspond to the motor used. hint: the user can for example switch the drive between three motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. the user needs only to adjust the settings and perform the motor identification once for each motor and then to save the data as three user macros. when the motor is changed, only the corresponding user macro needs to be loaded, and the drive is ready to operate. save enter menu save enter menu
program features 95 program features what this chapter contains the chapter describes program features. for each feature, there is a list of related user settings, actual signals, and fault and alarm messages. start-up assistant introduction the start-up assistant (requires the assistant control panel) guides the user through the start-up procedure, helping to enter the requested data (parameter values) to the drive. the start-up assistant also checks that the entered values are valid, i.e. within the allowed range. the start-up assistant calls other assistants, each of which guides the user through the task of specifying a related parameter set. at the first start, the drive suggests entering the first task, language select, automatically. the user may activate the tasks either one after the other as the start-up assistant suggests, or independently. the user may also adjust the drive parameters in the conventional way without using the assistant at all. see section assistants mode on page 76 on how to start the start-up assistant or other assistants. the default order of the tasks depending on the selection made in the application task (parameter 9902 applic macro), the start-up assistant decides which consequent tasks it suggests. the default tasks are shown in the table below. application selection default tasks abb standard language select, motor set-up, application, option modules, speed control ext1, speed control ext2, start/stop control, timed functions, protections, output signals 3-wire language select, motor set-up, application, option modules, speed control ext1, speed control ext2, start/stop control, timed functions, protections, output signals alternate language select, motor set-up, application, option modules, speed control ext1, speed control ext2, start/stop control, timed functions, protections, output signals motor pot language select, motor set-up, application, option modules, speed control ext1, speed control ext2, start/stop control, timed functions, protections, output signals hand/auto language select, motor set-up, application, option modules, speed control ext1, speed control ext2, start/stop control, timed functions, protections, output signals pid control language select, motor set-up, application, option modules, pid control, speed control ext2, start/stop control, timed functions, protections, output signals torque ctrl language select, motor set-up, application, option modules, speed control ext2, start/stop control, timed functions, protections, output signals
program features 96 list of the tasks and the relevant drive parameters depending on the selection made in the application task (parameter 9902 applic macro), the start-up assistant decides which consequent tasks it suggests. name description set parameters language select selecting the language 9901 motor set-up setting the motor data performing the motor identification. (if the speed limits are not in the allowed range: setting the limits.) 9904 ... 9909 9910 application selecting the application macro 9902 , parameters associated to the macro option modules activating the option modules group 35 motor temp meas group 52 panel comm 9802 speed control ext1 selecting the source for the speed reference 1103 (if ai1 is used: setting analog input ai1 limits, scale, inversion) ( 1301 ... 1303 , 3001 ) setting the reference limits 1104 , 1105 setting the speed (frequency) limits 2001 , 2002 , ( 2007 , 2008 ) setting the acceleration and deceleration times 2202 , 2203 speed control ext2 selecting the source for the speed reference 1106 (if ai1 is used: setting analog input ai1 limits, scale, inversion) ( 1301 ... 1303 , 3001 ) setting the reference limits 1107 , 1108 torque control selecting the source for the torque reference 1106 (if ai1 is used: setting analog input ai1 limits, scale, inversion) ( 1301 ... 1303 , 3001 ) setting the reference limits 1107 , 1108 setting the torque ramp up and ramp down times 2401 , 2402 pid control selecting the source for the process reference 1106 (if ai1 is used: setting analog input ai1 limits, scale, inversion) ( 1301 ... 1303 , 3001 ) setting the reference limits 1107 , 1108 setting the speed (reference) limits 2001 , 2002 , ( 2007 , 2008 ) setting the source and limits for the process actual value 4016 , 4018 , 4019 start/stop control selecting the source for start and stop signals of the two external control locations, ext1 and ext2 1001 , 1002 selecting between ext1 and ext2 1102 defining the direction control 1003 defining the start and stop modes 2101 ... 2103 selecting the use of run enable signal 1601 timed functions setting the timed functions 36 timed functions selecting the timed start/stop control for external control locations ext1 and ext2 1001 , 1002 selecting timed ext1/ext2 control 1102 activation of timed constant speed 1 1201 selecting timed function status indicated through relay output ro 1401 selecting timed pid1 parameter set 1/2 control 4027 protections setting the current and torque limits 2003 , 2017 output signals selecting the signals indicated through relay output ro group 14 relay outputs selecting the signals indicated through analog output ao setting the minimum, maximum, scaling and inversion group 15 analogue outputs
program features 97 contents of the assistant displays there are two types of displays in the start-up assistant: the main displays and the information displays. the main displays prompt the user to feed in information. the assistant steps through the main displays. the information displays contain help texts for the main displays. the figure below shows a typical example of both and explanations of the contents. local control vs. external control the drive can receive start, stop and direction commands and reference values from the control panel or through digital and analog inputs. embedded fieldbus or an optional fieldbus adapter enables control over an open fieldbus link. a pc equipped with drivewindow light pc tool can also control the drive. main display information display 1 2 1 parameter help text ? 2 feed-in field ? help text continued 9905 motor nom volt par edit 240 v exit save 00:00 loc exit 00:00 set exactly as given on the motor nameplate if connected to multiple motors help loc acs350 control panel external control local control standard i/o panel connection (x2) or pc tool panel connection (x2) fieldbus adapter connection (x3) potentiometer fmba adapter connected to x3 or embedded fieldbus (modbus) fieldbus adapter
program features 98 local control the control commands are given from the control panel keypad when the drive is in local control. loc indicates local control on the panel display. the control panel always overrides the external control signal sources when used in local mode. external control when the drive is in external control, the commands are given through the standard i/o terminals (digital and analog inputs) and/or the fieldbus interface. in addition, it is also possible to set the control panel as the source for the external control. external control is indicated with rem on the panel display. the user can connect the control signals to two external control locations, ext1 or ext2. depending on the user selection, either one is active at a time. this function operates on a 2 ms time level. settings diagnostics panel key additional information loc/rem selection between local and external control parameter 1102 selection between ext1 and ext2 1001 / 1002 start, stop, direction source for ext1/ext2 1103 / 1106 reference source for ext1/ext2 actual signals additional information 0111 / 0112 ext1/ext2 reference assistant panel basic panel 5 a 1 hz 7 % 10. 0. 49. 49.1hz loc dir menu 00:00 loc hz output fwd 491 . assistant panel basic panel 5 a 1 hz 7 % 10. 0. 49. 49.1hz rem dir menu 00:00 rem hz output fwd 491 .
program features 99 block diagram: start, stop, direction source for ext1 the figure below shows the parameters that select the interface for start, stop, and direction for external control location ext1. block diagram: reference source for ext1 the figure below shows the parameters that select the interface for the speed reference of external control location ext1. di1 fieldbus adapter keypad ext1 di5 comm di1 di5 control panel start/stop/ direction 1001 select embedded fieldbus fb. selection see chapters fieldbus control with embedded fieldbus and fieldbus control with fieldbus adapter . timed func 1...4 timed function timer/counter start/stop seq prog sequence programming ext1 ai1 1103 select keypad control panel ai2 di3 di4 ai1, ai2, di3, di4, di5 ref1 (hz/rpm) reference di5 fieldbus adapter embedded fieldbus fb. selection see chapters fieldbus control with embedded fieldbus and fieldbus control with fieldbus adapter . frequency input freq input comm seq prog sequence programming
program features 100 reference types and processing the drive can accept a variety of references in addition to the conventional analog input and control panel signals. ? the drive reference can be given with two digital inputs: one digital input increases the speed, the other decreases it. ? the drive can form a reference out of two analog input signals by using mathematical functions: addition, subtraction, multiplication and division. ? the drive can form a reference out of an analog input signal and a signal received through a serial communication interface by using mathematical functions: addition and multiplication. ? the drive reference can be given with frequency input. ? in external control location ext1/2 the drive can form a reference out of an analog input signal and a signal received through sequence programming by using a mathematical function: addition. it is possible to scale the external reference so that the signal minimum and maximum values correspond to a speed other than the minimum and maximum speed limits. settings diagnostics parameter additional information group 11 reference select external reference source, type and scaling group 20 limits operating limits group 22 accel/decel speed reference acceleration/deceleration ramps group 24 torque control torque reference ramp times group 32 supervision reference supervision actual signal additional information 0111 / 0112 ref1/ref2 reference group 03 fb actual signals references in different stages of the reference processing chain
program features 101 reference trimming in reference trimming, the external reference is corrected depending on the measured value of a secondary application variable. the block diagram below illustrates the function. settings parameter additional information 1102 ref1/2 selection 4230 ? 4233 trimming function settings 4201 ? 4229 pid control settings group 20 limits drive operation limits ref? 0 ref1 (hz/rpm) / ref2 (%) = the drive reference before trimming ref? = the drive reference after trimming max. speed= par. 2002 (or 2001 if the absolute value is greater) max. freq = par. 2008 (or 2007 if the absolute value is greater) max. torq = par. 2014 (or 2013 if the absolute value is greater) pid2 ref = par. 4210 pid2 act = par. 4214 ... 4221 1) note: torque reference trimming is only for external reference ref2 (%). 2) ref1 or ref2 depending on which is active. see parameter 1102 . 3) when par. 4232 = pid2ref, the maximum trimming reference is defined by parameter 1105 when ref1 is active and by parameter 1108 when ref2 is active. when par. 4232 = pid2 output, the maximum trimming reference is defined by parameter 2002 if parameter 9904 value is vector:speed or vector:torq and by parameter 2008 value if parameter 9904 value is scalar:freq. max.speed max.freq max.torque pid2 ref 4232 correction src 4231 trim scale 9904 1105 ref1 max / 1108 ref 2 max 2) switch mul. add pid2 4230 select direct (2) propor. (1) not sel (0) ref1 (hz/rpm) / ref2 (%) 2) ref1 (hz/rpm) / ref2 (%) 2) mul. 4233 1) switch switch 3) switch pid2 act pid2 output
program features 102 example the drive runs a conveyor line. it is speed controlled but the line tension also needs to be taken into account: if the measured tension exceeds the tension setpoint, the speed will be slightly decreased, and vice versa. to accomplish the desired speed correction, the user ? activates the trimming function and connects the tension setpoint and the measured tension to it. ? tunes the trimming to a suitable level. programmable analog inputs the drive has two programmable analog voltage/current inputs. the inputs can be inverted, filtered and the maximum and minimum values can be adjusted. the update cycle for the analog input is 8 ms (12 ms cycle once per second). the cycle time is shorter when information is transferred to the application program (8 ms -> 2ms). settings parameter additional information group 11 reference select ai as reference source group 13 analogue inputs analog input processing 3001 , 3021 , 3022 , 3107 ai loss supervision group 35 motor temp meas ai in motor temperature measurement group 40 process pid set 1 .... 42 ext / trim pid ai as pid process control reference or actual value source 8420 , 8425 , 8426 8430, 8435, 8436 ... 8490, 8495, 8496 ai as sequence programming reference or trigger signal drive rollers (pull) tension measurement speed controlled conveyor line add tension measurement speed reference tension setpoint trimmed speed reference simplified block diagram pid
program features 103 diagnostics programmable analog output one programmable current output (0 to 20 ma) is available. analog output signal can be inverted, filtered and the maximum and minimum values can be adjusted. the analog output signals can be proportional to motor speed, output frequency, output current, motor torque, motor power, etc. the update cycle for the analog output is 2 ms. analog output can be controlled with sequence programming. it is also possible to write a value to an analog output through a serial communication link. settings diagnostics programmable digital inputs the drive has five programmable digital inputs. the update time for the digital inputs is 2 ms. one digital input (di5) can be programmed as a frequency input. see section frequency input on page 105 . actual value additional information 0120 , 0121 analog input values 1401 ai1/a2 signal loss alarm ai1 loss / ai2 loss ai1/ai2 signal below ai1/ai2 fault limit ( 3021 / 3022 ) fault ai1 loss / ai2 loss ai1/ai2 signal below limit ai1/ai2 fault limit ( 3021 / 3022 ) par ai scale incorrect ai signal scaling ( 1302 < 1301 or 1305 < 1304 ) parameter additional information group 15 analogue outputs ao value selection and processing group 35 motor temp meas ao in motor temperature measurement 8423 / 8433/.../8493 ao control with sequence programming actual value additional information 0124 ao value 0170 ao control values defined by sequence programming fault par ao scale incorrect ao signal scaling ( 1503 < 1502 )
program features 104 settings diagnostics programmable relay output the drive has one programmable relay output. by means of a parameter setting it is possible to choose what information to indicate through the relay output: ready, running, fault, alarm, etc. the update time for the relay output is 2 ms. it is possible to write a value to a relay output through a serial communication link. settings diagnostics parameter additional information group 10 start/stop/dir di as start, stop, direction group 11 reference select di in reference selection, or reference source group 12 constant speeds di in constant speed selection group 16 system controls di as external run enable, fault reset or user macro change signal group 19 timer & counter di as timer or counter control signal source 2013 , 2014 di as torque limit source 2109 di as external emergency stop command source 2201 di as acceleration and deceleration ramp selection signal 2209 di as zero ramp force signal 3003 di as external fault source group 35 motor temp meas di in motor temperature measurement 3601 di as timed function enable signal source 3622 di as booster activation signal source 4010 / 4110 / 4210 di as pid controller reference signal source 4022 / 4122 di as sleep function activation signal in pid1 4027 di as pid1 parameter set 1/2 selection signal source 4228 di as external pid2 function activation signal source group 84 sequence prog di as sequence programming control signal source actual value additional information 0160 di status 0414 di status at the time the latest fault occurred parameter additional information group 14 relay outputs ro value selections and operation times 8423 ro control with sequence programming actual value additional information 0134 ro control word through fieldbus control 0162 ro status
program features 105 frequency input digital input di5 can be programmed as a frequency input. frequency input (0...16000 hz) can be used as external reference signal source. the update time for the frequency input is 50 ms. update time is shorter when information is transferred to the application program (50 ms -> 2 ms). settings diagnostics transistor output the drive has one programmable transistor output. the output can be used either as digital output or frequency output (0...16000 hz). the update time for the transistor/ frequency output is 2 ms. settings diagnostics parameter additional information group 18 freq in & tran out frequency input minimum and maximum values and filtering 1103 / 1106 external reference ref1/2 through frequency input 4010 , 4110 , 4210 frequency input as pid reference source actual value additional information 0161 frequency input value parameter additional information group 18 freq in & tran out transistor output settings 8423 transistor output control in sequence programming actual value additional information 0163 transistor output status 0164 transistor output frequency
program features 106 actual signals several actual signals are available: ? drive output frequency, current, voltage and power ? motor speed and torque ? intermediate circuit dc voltage ? active control location (local, ext1 or ext2) ? reference values ? drive temperature ? operating time counter (h), kwh counter ? digital i/o and analog i/o status ? pid controller actual values. three signals can be shown simultaneously on the assistant control panel display (one signal on the basic panel display). it is also possible to read the values through the serial communication link or through the analog outputs. settings diagnostics motor identification the performance of vector control is based on an accurate motor model determined during the motor start-up. a motor identification magnetisation is automatically done the first time the start command is given. during this first start-up, the motor is magnetised at zero speed for several seconds to allow the motor model to be created. this identification method is suitable for most applications. in demanding applications a separate identification run (id run) can be performed. settings parameter 9910 id run parameter additional information 1501 selection of an actual signal to ao 1808 selection of an actual signal to frequency output group 32 supervision actual signal supervision group 34 panel display selection of an actual signals to be displayed on the control panel actual value additional information group 01 operating data ? 04 fault history lists of actual signals
program features 107 power loss ride-through if the incoming supply voltage is cut off, the drive will continue to operate by utilising the kinetic energy of the rotating motor. the drive will be fully operational as long as the motor rotates and generates energy to the drive. the drive can continue the operation after the break if the main contactor remained closed. settings parameter 2006 undervolt ctrl dc magnetising when dc magnetising is activated, the drive automatically magnetises the motor before starting. this feature guarantees the highest possible breakaway torque, up to 180% of motor nominal torque. by adjusting the premagnetising time, it is possible to synchronise the motor start and e.g. a mechanical brake release. the automatic start feature and dc magnetising cannot be activated at the same time. settings parameters 2101 start function and 2103 dc magn time maintenance trigger a maintenance trigger can be activated to show a notice on the panel display when e.g. drive power consumption has exceeded the defined trigger point. settings parameter group 29 maintenance trig 130 260 390 520 1.6 4.8 8 11.2 14.4 t (s) u dc f out t m u dc = intermediate circuit voltage of the drive, f out = output frequency of the drive, t m = motor torque loss of supply voltage at nominal load (f out = 40 hz). the intermediate circuit dc voltage drops to the minimum limit. the controller keeps the voltage steady as long as the input power is switched off. the drive runs the motor in generator mode. the motor speed falls but the drive is operational as long as the motor has enough kinetic energy. u input power 20 40 60 80 40 80 120 160 t m (nm) f out (hz) u dc (vdc) 00 0
program features 108 dc hold by activating the motor dc hold feature it is possible to lock the rotor at zero speed. when both the reference and the motor speed fall below the preset dc hold speed, the drive stops the motor and starts to inject dc into the motor. when the reference speed again exceeds the dc hold speed, the normal drive operation resumes. settings parameters 2104 ... 2106 speed compensated stop speed compensation stop is available e.g. for applications, where a conveyer needs to travel a certain distance after receiving the stop command. at maximum speed the motor is stopped normally along the defined deceleration ramp. below maximum speed stop is delayed by running the drive at current speed before the motor is ramped to a stop. as shown in the following figure, the distance travelled after the stop command is the same in both cases, i.e. area a equals area b. speed compensation can be restricted to forward or reverse rotating direction. settings parameter 2102 stop function flux braking the drive can provide greater deceleration by raising the level of magnetisation in the motor. by increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. dc hold t motor dc hold speed dc hold speed t speed reference speed t speed stop command b a area a = area b max. speed used speed flux braking no flux braking t (s) motor flux braking no flux braking f (hz) t br t n 20 40 60 (%) t n = 100 nm t br = braking torque speed 50 hz / 60 hz
program features 109 the drive monitors the motor status continuously, also during the flux braking. therefore, flux braking can be used both for stopping the motor and for changing the speed. the other benefits of flux braking are: ? the braking starts immediately after a stop command is given. the function does not need to wait for the flux reduction before it can start the braking. ? the cooling of the motor is efficient. the stator current of the motor increases during the flux braking, not the rotor current. the stator cools much more efficiently than the rotor. settings parameter 2602 flux braking 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40 45 50 flux braking 1 2 3 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40 45 50 1 2 3 f / (hz) braking torque (%) f / (hz) braking torque (%) 1 2 3 7.5 kw 2.2 kw 0.37 kw rated motor power 1 2 3 7.5 kw 2.2 kw 0.37 kw rated motor power no flux braking
program features 110 flux optimisation flux optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. the total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed. settings parameter 2601 flux opt enable acceleration and deceleration ramps two user-selectable acceleration and deceleration ramps are available. it is possible to adjust the acceleration/deceleration times and the ramp shape. switching between the two ramps can be controlled via a digital input or fieldbus. the available ramp shape alternatives are linear and s-curve. linear : suitable for drives requiring steady or slow acceleration/deceleration. s-curve : ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed. settings parameter group 22 accel/decel sequence programming offers eight additional ramp times. see section sequence programming on page 133 . critical speeds a critical speeds function is available for applications where it is necessary to avoid certain motor speeds or speed bands because of e.g. mechanical resonance problems. the user can define three critical speeds or speed bands. settings parameter group 25 critical speeds linear t (s) motor 2 speed s-curve
program features 111 constant speeds it is possible to define seven positive constant speeds. constant speeds are selected with digital inputs. constant speed activation overrides the external speed reference. constant speed selections are ignored if ? torque control is active, or ? pid reference is being followed, or ? drive is in local control mode. this function operates on a 2 ms time level. settings parameter group 12 constant speeds constant speed 7 ( 1208 const speed 7) is also used for fault functions. see parameter group 30 fault functions . constant speed 6 or 7 ( 1207 const speed 6 / 1208 const speed 7) is also used for jogging function. see section jogging on page 129 .
program features 112 custom u/f ratio the user can define a u/f curve (output voltage as a function of frequency). this custom ratio is used only in special applications where linear and squared u/f ratio are not sufficient (e.g. when motor break-away torque needs to be boosted). note: the voltage and the frequency points of the u/f curve must fulfill the following requirements: 2610 < 2612 < 2614 < 2616 < 2618 and 2611 < 2613 < 2615 < 2617 < 9907 warning! high voltage at low frequencies may result in poor performance or motor damage (overheating). settings diagnostics parameter additional information 2605 custom u/f ratio activation 2610 ... 2618 custom u/f ratio settings fault additional information par custom u/f incorrect u/f ratio f (hz) voltage (v) par. 2603 par. 2611 par. 2613 par. 2615 par. 2617 par. 9907 par. 2610 par. 2612 par. 2614 par. 2616 par. 2618 custom u/f ratio
program features 113 speed controller tuning it is possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller autotune run (parameter 2305 autotune run). in autotune run, the speed controller is tuned based on the load and inertia of the motor and the machine. the figure below shows speed responses at a speed reference step (typically, 1 to 20%). the figure below is a simplified block diagram of the speed controller. the controller output is the reference for the torque controller. settings parameter groups 23 speed control and 20 limits diagnostics actual signal 0102 speed a: undercompensated b: normally tuned (autotuning) c: normally tuned (manually). better dynamic performance than with b d: overcompensated speed controller (%) t n c b d n n a derivative proportional, integral derivative acceleration compensation tor q ue reference speed reference calculated actual speed error value - + + + +
program features 114 speed control performance figures the table below shows typical performance figures for speed control. torque control performance figures the drive can perform precise torque control without any speed feedback from the motor shaft. the table below shows typical performance figures for torque control. 100 t (s) t t n (%) t load n act -n ref n n area < 1% s t n = rated motor torque n n = rated motor speed n act = actual speed n ref = speed reference speed control no pulse encoder with pulse encoder static accuracy 20% of motor nominal slip 2% of motor nominal slip dynamic accuracy < 1% s with 100% torque step < 1% s with 100% torque step torque control no pulse encoder with pulse encoder non-linearity 5% with nominal torque ( 20% at the most demanding operating point) 5% with nominal torque torque step rise time < 10 ms with nominal torque < 10 ms with nominal torque 100 t (s) t t n < 5 ms 90 10 (%) t ref t act t n = rated motor torque t ref = torque reference t act = actual torque
program features 115 scalar control it is possible to select scalar control as the motor control method instead of vector control. in the scalar control mode, the drive is controlled with a frequency reference. it is recommended to activate the scalar control mode in the following special applications: ? in multimotor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after the motor identification. ? if the nominal current of the motor is less than 20% of the nominal output current of the drive. in the scalar control mode, some standard features are not available. settings parameter 9904 motor ctrl mode ir compensation for a scalar controlled drive ir compensation is active only when the motor control mode is scalar (see section scalar control on page 115 ). when ir compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. ir compensation is useful in applications that require high breakaway torque. in vector control, no ir compensation is possible/needed. settings parameter 2603 ir comp volt programmable protection functions ai program features 116 external fault external faults (1 and 2) can be supervised by defining one digital input as a source for an external fault indication signal. settings parameters 3003 external fault 1 and 3004 external fault 2 stall protection the drive protects the motor in a stall situation. it is possible to adjust the supervision limits (frequency, time) and choose how the drive reacts to the motor stall condition (alarm indication / fault indication & drive stop / no reaction). settings parameters 3010 ... 3012 motor thermal protection the motor can be protected against overheating by activating the motor thermal protection function. the drive calculates the temperature of the motor on the basis of the following assumptions: 1) the motor is in the ambient temperature of 30 c when power is applied to the drive. 2) motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time constant and motor load curve (see the figures below). the load curve should be adjusted in case the ambient temperature exceeds 30c. settings parameters 3005 ... 3009 note: it is also possible to use the motor temperature measurement function. see section motor temperature measurement through the standard i/o on page 124 . motor 100% te m p . 63% motor thermal time constant t t 100% 50 100 150 zero speed load motor load curve break point motor speed load current (%) rise
program features 117 underload protection loss of motor load may indicate a process malfunction. the drive provides an underload function to protect the machinery and process in such a serious fault condition. supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (alarm indication / fault indication & drive stop / no reaction). settings parameters 3013 ... 3015 earth fault protection the earth fault protection detects earth faults in the motor or motor cable. the protection is active only during start. an earth fault in the input power line does not activate the protection. settings parameter 3017 earth fault incorrect wiring defines the operation when incorrect input power cable connection is detected. settings parameter 3023 wiring fault input phase loss input phase loss protection circuits supervise the input power cable connection status by detecting intermediate circuit ripple. if a phase is lost, the ripple increases. settings parameter 3016 supply phase preprogrammed faults overcurrent the overcurrent trip limit for the drive is 325% of the drive nominal current. dc overvoltage the dc overvoltage trip limit is 420 v (for 200 v drives) and 840 v (for 400 v drives). dc undervoltage the dc undervoltage trip limit is 162 v (for 200 v drives) and 308 v (for 400 v drives).
program features 118 drive temperature the drive supervises the igbt temperature. there are two supervision limits: alarm limit and fault trip limit. short circuit if a short circuit occurs, the drive will not start and a fault indication is given. internal fault if the drive detects an internal fault, the drive is stopped and a fault indication is given. operation limits the drive has adjustable limits for speed, current (maximum), torque (maximum) and dc voltage. settings parameter group 20 limits power limit power limitation is used to protect the input bridge and the dc intermediate circuit. if the maximum allowed power is exceeded, the drive torque is automatically limited. maximum overload and continuous power limits depend on the drive hardware. for specific values, see chapter technical data . automatic resets the drive can automatically reset itself after overcurrent, overvoltage, undervoltage, external and ?analog input below a minimum? faults. the automatic resets must be activated by the user. settings parameter additional information 31 automatic reset automatic reset settings alarm autoreset automatic reset alarm
program features 119 supervisions the drive monitors whether certain user selectable variables are within the user-defined limits. the user may set limits for speed, current etc. the supervision status can be indicated through relay or digital output. the supervision functions operate on a 2 ms time level. settings parameter group 32 supervision diagnostics parameter lock the user can prevent parameter adjustment by activating the parameter lock. settings parameters 1602 parameter lock and 1603 pass code actual signals additional information 1401 supervision status through ro 1805 supervision status through do 8425 , 8426 / 8435, 8436 /.../ 8495, 8496 sequence programming state change according to supervision functions
program features 120 pid control there are two built-in pid controllers in the drive: ? process pid (pid1) and ? external/trim pid (pid2). the pid controller can be used when the motor speed needs to be controlled based on process variables such as pressure, flow or temperature. when the pid control is activated, a process reference (setpoint) is connected to the drive instead of a speed reference. an actual value (process feedback) is also brought back to the drive. the drive compares the reference and the actual values, and automatically adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (reference). the control operates on a 2 ms time level. process controller pid1 pid1 has two separate sets of parameters ( 40 process pid set 1 , 41 process pid set 2 ). selection between parameter sets 1 and 2 is defined by a parameter. in most cases when there is only one transducer signal wired to the drive , only parameter set 1 is needed. two different parameter sets (1 and 2) are used e.g. when the load of the motor changes considerably in time. external/trim controller pid2 pid2 ( 42 ext / trim pid ) can be used in two different ways: ? external controller: instead of using additional pid controller hardware, the user can connect pid2 output via drive analog output or fieldbus controller to control a field instrument like a damper or a valve. ? trim controller: pid2 can be used to trim or fine tune the reference of the drive. see section reference trimming on page 101 . block diagrams the figure below shows an application example: the controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference.         
              
 ' + + + 1 1 1 " +  7  % 1 1 1 # +  6  $ $ # pid ref k ti td i dfiltt errvinv oh1 ol1 %ref 4001 4002 4003 4004 4005 pidmax pidmin switch speed reference frequency reference 9904 = 0 example: pid control block diagram %ref = 4010 pressure boost pump acs350 ... actual values 4014 4021 ai1 ai2 imot . . .
program features 121 the following figure presents the speed/scalar control block diagram for process controller pid1. pid act pid1 out 1106 n 1102 switch ext1/ext2 control panel switch loc/rem 1101 switch local ref panel ref1 panel ref2 n panel ref2 ai ... seq prog. value n 1104 limiter pid act value panel ref2 500% limiter -500% pid1 out average speed const speed 7 speed n ai current torque power comm act n ai current to r q u e power comm act 4014...4021/ pid act selection 1103 ext1 ref select 1106 ext2 ref select panel ref2 ai ... ai2+seq. panel ref1 ai ... ai2+seq. 4010/4110* pid1 ref select 4014...4021/ pid act selection 4012,4013/ limiter group 12 constant speed group 12 constant speed switch group pid1 controller 1106 switch 1107 limiter group 30 alarm speed group pid1 controller loc rem ref 4112,4113* 40/41* 40/41* 4114...4121* 4141...4121* *parameter 4027 selects between pid parameter set 1 and 2, i.e. group 40 and 41.
program features 122 settings diagnostics sleep function for the process pid (pid1) control the sleep function operates on a 2 ms time level. the block diagram below illustrates the sleep function enable/disable logic. the sleep function can be put into use only when the pid control is active. parameter additional information 1101 local control mode reference type selection 1102 ext1/2 selection 1106 pid1 activation 1107 ref2 minimum limit 1501 pid2 output (external controller) connection to ao 9902 pid control macro selection group 40 process pid set 1 ... 41 process pid set 2 pid1 settings group 42 ext / trim pid pid2 settings actual signals additional information 0126 / 0127 pid 1/2 output value 0128 / 0129 pid 1/2 setpoint value 0130 / 0131 pid 1/2 feedback value 0132 / 0133 pid 1/2 deviation 0170 ao value defined by sequence programming 1) 1 = activate sleeping 0 = deactivate sleeping 4022 select compare 1<2 or < 1 4024 delay t 1 2 4023 not sel di1 and & %refactive pidctrlactive modulating set/reset s r s/r not sel internal di1 4026 delay t or < 1 startrq 5320 (b1) 5320 (b2) 1) internal 4022 select mot.speed: actual speed of the motor %refactive: the % reference (ext ref2) is in use. see parameter 1102 . pidctrlactive: 9902 is pid ctrl. modulating: the inverter igbt control is operating. . . . . . . mot.speed 9904 switch output freq. compare 1>2 0132 4025 1 2
program features 123 example the time scheme below visualises the operation of the sleep function. sleep function for a pid controlled pressure boost pump (when parameter 4022 is set to internal): the water consumption falls at night. as a consequence, the pid process controller decreases the motor speed. however, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor does not stop but keeps rotating. the sleep function detects the slow rotation, and stops the unnecessary pumping after the sleep delay has passed. the drive shifts into sleep mode, still monitoring the pressure. the pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed. settings diagnostics parameter additional information 9902 pid control activation 4022 ... 4026 , 4122 ... 4126 sleep function settings alarm additional information pid sleep sleep mode parameter additional information 1401 pid sleep function status through ro actual value wake-up deviation par. 4025 motor speed sleep level par. 4023 t t start stop t < t d t d t d = sleep delay, parameter 4024 text on display sleep mode t wd t wd = wake-up delay, parameter 4026
program features 124 motor temperature measurement through the standard i/o this section describes the temperature measurement of one motor when the drive i/ o terminals are used as the connection interface. motor temperature can be measured using pt100 or ptc sensors connected to analog input and output. warning! according to iec 664, the connection of the motor temperature sensor requires double or reinforced insulation between motor live parts and the sensor. reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 vac equipment). if the assembly does not fulfill the requirement ? the i/o board terminals must be protected against contact and they may not be connected to other equipment or ? the temperature sensor must be isolated from the i/o terminals. motor t motor t t t one sensor three sensors ai1 gnd ao gnd ai1 gnd ao gnd 10 nf 10 nf
program features 125 it is also possible to monitor motor temperature by connecting a ptc sensor and a thermistor relay between the +24 vdc voltage supply offered by the drive and digital input. the figure below displays the connection. warning! according to iec 664, the connection of the motor thermistor to the digital input requires double or reinforced insulation between motor live parts and the thermistor. reinforced insulation entails a clearance and creeping distance of 8 mm (400 / 500 vac equipment). if the thermistor assembly does not fulfill the requirement, the other i/o terminals of the drive must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input. settings diagnostics parameter additional information 13 analogue inputs analog input settings 15 analogue outputs analog output settings 35 motor temp meas motor temperature measurement settings other at the motor end the cable shield should be earthed through a 10 nf capacitor. if this is not possible, the shield is to be left unconnected. actual values additional information 0145 motor temperature alarm/fault additional information motor temp / mot overtemp excessive motor temp motor t thermistor relay di1...5 +24 vdc par. 3501 = therm(0) or therm(1)
program features 126 control of a mechanical brake the mechanical brake is used for holding the motor and driven machinery at zero speed when the drive is stopped, or not powered. example the figure below shows a brake control application example. warning! make sure that the machinery into which the drive with brake control function is integrated fulfills the personnel safety regulations. note that the frequency converter (a complete drive module or a basic drive module, as defined in iec 61800-2), is not considered as a safety device mentioned in the european machinery directive and related harmonised standards. thus, the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations. motor m 230 vac mechanical brake power supply emergency brake x1b 17 rocom 18 ronc 19 rono brake control logic is integrated in the drive application program. the power supply and wirings needs to be done by the user. - brake on/off control through relay output ro
program features 127 operation time scheme the time scheme below illustrates the operation of the brake control function. see also section state shifts on page 128 . i s / t s brake open current/torque ( 4302 ) t md motor magnetising delay (parameter 4305 ) t od brake open delay (parameter 4301 ) n cs brake close speed (parameter 4303 ) t cd mechanical brake close delay start command inverter modulating motor magnetised open brake command (ro/do) internal speed reference (actual motor speed) i output / torque t t od t cd n cs external speed reference t md 1 2 3 4 7 i s / t s
program features 128 state shifts settings parameter additional information 1401 / 1805 mechanical brake activation through ro/do 2112 zero speed delay group 43 mech brk control brake function settings rfg input to zero close brake open brake from any state 1/1/1 0/1/1 1/1/0 1/1/0 1) 2) release rfg input 3) 4) 7) 8) 5) no modulation 0/0/1 9) 6) a a state (symbol ) - nn: state name - x/y/z: state outputs/operations x = 1 open the brake. the relay output set to brake on/off control energises. y = 1 forced start. the function keeps the internal start on until the brake is closed in spite of the status of the external start signal. z = 1 ramp in zero. forces the used speed reference (internal) to zero along a ramp. nn x/y/z state change conditions (symbol ) 1) brake control active 0 -> 1 or inverter is modulating = 0 2) motor magnetised = 1 and drive running = 1 3) brake is open and brake open delay passed and start = 1 4) start = 0 5) start = 0 6) start = 1 7) actual motor speed < brake close speed and start = 0 8) start = 1 9) brake is closed and brake close delay passed = 1 and start = 0 rfg = ramp function generator in the speed control loop (reference handling). (rising edge)
program features 129 jogging the jogging function is typically used to control a cyclical movement of a machine section. one push button controls the drive through the whole cycle: when it is on, the drive starts, accelerates to a preset speed at a preset rate. when it is off, the drive decelerates to zero speed at a preset rate. the figure and table below describe the operation of the drive. they also represent how the drive shifts to normal operation (= jogging inactive) when the drive start command is switched on. jog cmd = state of the jogging input, start cmd = state of the drive start command. the function operates on a 2 ms time level. x = state can be either 1 or 0. note: the jogging is not operational when the drive start command is on. note: the jogging speed overrides the constant speeds. note: the jogging uses ramp stop even if parameter 2102 stop function selection is coast. note: the ramp shape time is set to zero during the jogging (i.e. linear ramp). phase jog cmd start cmd description 1-2 1 0 drive accelerates to the jogging speed along the acceleration ramp of the jogging function. 2-3 1 0 drive runs at the jogging speed. 3-4 0 0 drive decelerates to zero speed along the deceleration ramp of the jogging function. 4-5 0 0 drive is stopped. 5-6 1 0 drive accelerates to the jogging speed along the acceleration ramp of the jogging function. 6-7 1 0 drive runs at the jogging speed. 7-8 x 1 normal operation overrides the jogging. drive accelerates to the speed reference along the active acceleration ramp. 8-9 x 1 normal operation overrides the jogging. drive follows the speed reference. 9-10 0 0 drive decelerates to zero speed along the active deceleration ramp. 10-11 0 0 drive is stopped. 11-12 x 1 normal operation overrides the jogging. drive accelerates to the speed reference along the active acceleration ramp. 12-13 x 1 normal operation overrides the jogging. drive follows he speed reference. 13-14 1 0 drive decelerates to the jogging speed along the deceleration ramp of the jogging function. 14-15 1 0 drive runs at the jogging speed. 15-16 0 0 drive decelerates to zero speed along the deceleration ramp of the jogging function. t speed 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
program features 130 jogging function uses constant speed 7 as jogging speed and acceleration/ deceleration ramp pair 2. it is also possible to activate jogging function 1 or 2 through fieldbus. jogging function 1 uses constant speed 7 and jogging function 2 uses constant speed 6. both functions use acceleration/deceleration ramp pair 2. settings diagnostics parameter additional information 1010 jogging activation 1208 jogging speed 1208 / 1207 jogging speed for jogging function 1/2 activated through fieldbus 2112 zero speed delay 2205 , 2206 acceleration and deceleration times 2207 acceleration and deceleration ramp shape time: set to zero during the jogging (i.e. linear ramp). actual values additional information 0302 jogging 1/2 activation through fieldbus 1401 jogging function status through ro 1805 jogging function status through do
program features 131 timed functions a variety of drive functions can be time controlled, e.g. start/stop and ext1/ext2 control. the drive offers ? four start and stop times (start time 1...4, stop time 1...4) ? four start and stop days (start day 1...4, stop day 1...4) ? four timed functions for collecting the selected time periods 1...4 together (timed func 1...4) ? booster time (an additional booster time connected to timed functions). a timed function can be connected to multiple time periods: a parameter which is triggered by a timed function can be connected to only one timed function at a time. time period 1 3602 start time 1 3603 stop time 1 3604 start day 1 3605 stop day 1 time period 4 3614 start time 4 3615 stop time 4 3616 start day 4 3617 stop day 4 time period 3 3610 start time 3 3611 stop time 3 3612 start day 3 3613 stop day 3 time period 2 3606 start time 2 3607 stop time 2 3608 start day 2 3609 stop day 2 booster 3622 booster sel 3623 booster time timed func 1 3626 timed func 1 src timed func 2 3627 timed func 2 src timed func 3 3628 timed func 3 src timed func 4 3629 timed func 4 src timed func 2 3627 timed func 2 src 1001 ext 1 commands 1002 ext 2 commands 1102 ext1/ext2 sel 1201 const speed sel 1401 relay output 1 4027 pid param set timed func 1 3626 timed func 1 src 4228 activate 1209 time mode sel 8402 seq prog start 8406 seq logic val 1 8425/35/45/55/65/75/85/95 st 1...8 trig to st 2 8426/36/46/56/66/76/86/96 st 1....8 trig to st n
program features 132 example air conditioning is active on weekdays from 8:00 to 15:30 (8 a.m to 3:30 p.m) and on sundays from 12:00 to 15:00 (12 to 3 p.m). by pressing the extension time switch, the air-conditioning is on for an extra hour. settings timer drive start and stop can be controlled with timer functions. settings diagnostics parameter setting 3602 start time 1 08:00:00 3603 stop time 1 15:30:00 3604 start day 1 monday 3605 stop day 1 friday 3606 start time 2 12:00:00 3607 stop time 2 15:00:00 3608 start day 2 sunday 3609 stop day 2 sunday 3623 booster time 01:00:00 parameter additional information 36 timed functions timed functions settings 1001 , 1002 timed start/stop control 1102 timed ext1/ext2 selection 1201 timed constant speed 1 activation 1209 timed speed selection 1401 timed function status indicated through relay output ro 1805 timed function status indicated through digital output do 4027 timed pid1 parameter set 1/2 selection 4228 timed external pid2 activation 8402 timed sequence programming activation 8425 /8435/.../8495 8426 /8436/.../8496 sequence programming state change trigger with timed function parameter additional information 1001 , 1002 start/stop signal sources 19 timer & counter timer for start and stop actual value additional information 0165 start/stop control time count
program features 133 counter drive start and stop can be controlled with counter functions. the counter function can also be used as state change trigger signal in sequence programming. see section sequence programming on page 133 . settings diagnostics sequence programming the drive can be programmed to perform a sequence where the drive shifts typically through 1 to 8 states. user defines the operation rules for the whole sequence and for each state. the rules of a particular state are effective when the sequence program is active and the program has entered the state. the rules to be defined for each state are: ? run, stop and direction commands for the drive (forward/reverse/stop) ? acceleration and deceleration ramp time for the drive ? source for the drive reference value ? state duration ? ro/do/ao status ? signal source for triggering the shift to next state ? signal source for triggering the shift to any state (1...8). every state can also activate drive outputs to give an indication to external devices. sequence programming allows state transitions either to the next state or to a selected state. state change can be activated with e.g. timed functions, digital inputs and supervision functions. sequence programming can be applied in simple mixer applications as well as in more complicated traverse applications. the programming can be done with control panel or with a pc tool. acs350 is supported by version 2.50 (or later version) of the drivewindow light pc tool which includes a graphical sequence programming tool. parameter additional information 1001 , 1002 start/stop signal sources 19 timer & counter counter for start and stop 8425 , 8426 / 8435, 8436 /..../ 8495 , 8496 counter signal as state change trigger in sequence programming actual value additional information 0166 start/stop control pulse count
program features 134 note: as default all sequence programming parameters can be changed even when the sequence programming is active. it is recommended, that after the sequence programming parameters are set, parameters are locked by parameter 1602 parameter lock. settings diagnostics parameter additional information 1001 / 1002 start, stop and direction commands for ext1/ext2 1102 ext1/ext2 selection 1106 ref2 source 1201 constant speed deactivation. constant speed always overrides the sequence programming reference. 1401 sequence programming output through ro 1501 sequence programming output through ao 1601 run enable activation/deactivation 1805 sequence programming output through do 19 timer & counter state change according to counter limit 36 timed functions timed state change 2201 .... 2207 acceleration/deceleration and ramp time settings 32 supervision supervision settings 4010 / 4110 / 4210 sequence programming output as pid reference signal 84 sequence prog sequence programming settings actual value additional information 0167 sequence programming status 0168 sequence programming active state 0169 current state time counter 0170 analog output pid reference control values 0171 executed sequence counter
program features 135 the state diagram below presents the state shift in sequence programming. go to state 2 (par. 8425)* 0168 = 1 (state 1) go to state n (par 8426, 8427)* 0168 = 2 (state 2) state 1 (par. 8420...8424) go to state 3 (par. 8435)* go to state n (par 8436, 8437)* state 2 (par. 8430...8434) go to state 4 (par. 8445)* go to state n (par 8446, 8447)* 0168 = 3 (state 3) state 3 (par. 8440...8444) go to state 5 (par. 8455)* go to state n (par 8456, 8457)* go to state 6 (par. 8465)* go to state n (par 8466, 8467)* go to state 7 (par. 8475)* go to state n (par 8476, 8477)* 0168 = 4 (state 4) 0168 = 5 (state 5) 0168 = 6 (state 6) state 4 (par. 8450...8454) state 5 (par. 8460...8464) state 6 (par. 8470...8474) go to state 8 (par. 8485)* go to state n (par 8486, 8487)* 0168 = 7 (state 7) state 7 (par. 8480...8484) go to state 1 (par. 8495)* go to state n (par 8496, 8497)* 0168 = 8 (state 8) state 8 (par. 8490...8494) 0167 bit 0 = 1 sequence programming enable state n state n state n state n state n state n state n state n *state change to state n has a higher priority than state change to the next state. nn x nn = state x = actual signal state change
program features 136 example 1 sequence programming is activated by digital input di1. st1: drive is started in reverse direction with -50 hz reference and 10 s ramp time. state 1 is active for 40 s. st2: drive is accelerated to 20 hz with 60 s ramp time. state 2 is active for 120 s. st3: drive is accelerated to 25 hz with 5 s ramp time. state 3 is active until the sequence programming is disabled or until booster start is activated by di2. st4: drive is accelerated to 50 hz with 5 s ramp time. state 4 is active for 200 s and after that the state shifts back to state 3. parameter setting additional information 1002 ext2 commands seq prog start, stop, direction commands for ext2 1102 ext1/ext2 sel ext2 ext2 activation 1106 ref2 select seq prog sequence programming output as ref2 1601 run enable not sel deactivation of run enable 2102 stop function ramp ramp stop 2201 acc/dec 1/2 sel seq prog ramp as defined by parameter 8422/.../8452. 8401 seq prog enable always sequence programming enabled 8402 seq prog start di1 sequence programming activation through digital input (di1) 8404 seq prog reset di1(inv) sequence programming reset (i.e. reset to state 1, when di1 signal is lost (1 -> 0) st1 st2 st3 st4 additional information par. setting par. setting par. setting par. setting 8420 st1 ref sel 100% 8430 40% 8440 50% 8450 100% state reference 8421 st1 commands start rev 8431 start frw 8441 start frw 8451 start frw run, direction and stop command 8422 st1 ramp 10 s 8432 60 s 8442 5 s 8452 5 s ramp time 8424 st1 change dly 40 s 8434 120 s 8444 8454 200 s state change delay 8425 st1 trig to st 2 change dly 8435 change dly 8445 di2 8455 state change trigger 8426 st1 trig to st n not sel 8436 not sel 8446 not sel 8456 change dly 8427 st1 state n - 8437 - 8447 - 8457 3 0 hz -50 hz 50 hz di1 di2 seq. start state change trigger st1 st2 st3 st4 st3
program features 137 example 2: drive is programmed for traverse control with 30 sequences. sequence programming is activated by digital input di1. st1: drive is started in forward direction with ai1 (ai1 + 50% - 50%) reference and ramp pair 2. state shifts to the next state when reference is reached. all relay and analog outputs are cleared. st2: drive is accelerated with ai1 + 15% (ai1 + 65% - 50%) reference and 1.5 s ramp time. state shifts to the next state when reference is reached. if reference is not reached within 2 s, state shifts to state 8 (error state). st3: drive is decelerated with ai1 + 10% (ai1 + 60% - 50%) reference and 0 s ramp time 1) . state shifts to the next state when reference is reached. if reference is not reached within 0.2 s, state shifts to state 8 (error state). st4: drive is decelerated with ai1 - 15% (ai1 + 35% -50%) reference and 1.5 s ramp time. state shifts to the next state when reference is reached. if reference is not reached within 2 s, state shifts to state 8 (error state). 2) st5: drive is accelerated with ai1 -10% (ai1 + 40% -50%) reference and 0 s ramp time 1) . state shifts to the next state when reference is reached. sequence counter value is increased by 1. if sequence counter elapses, state shifts to state 7 (sequence completed). st6: drive reference and ramp times are the same as in state 2. drive state shifts immediately to state 2 (delay time is 0 s). st7 (sequence completed): drive is stopped with ramp pair 1. digital output do is activated. if sequence programming is deactivated by falling edge of digital input di1, state machine is reset to state 1. new start command can be activated by digital input di1 or by digital inputs di4 and di5 (both inputs di4 and di5 must be simultaneously active). st2 st3 st3 st5 st5 st5 st8 error st1 st2 st2 st2 (error: acceleration st4 st4 st4 ro too slow) st8 ai1 - 10% st3 ai1 - 15% ai1 + 10% ai1 + 15% ai1 di1 seq. start error
program features 138 st8 (error state): drive is stopped with ramp pair 1. relay output ro is activated. if sequence programming is deactivated by falling edge of digital input di1, state machine is reset to state 1. new start command can be activated by digital input di1 or by digital inputs di4 and di5 (both inputs di4 and di5 must be simultaneously active). 1) 0 second ramp time = drive is accelerated/decelerated as rapidly as possible. 2) state reference must be between 0...100%, i.e scaled ai1 value must be between 15...85%. if ai1 = 0 reference = 0% + 35% -50% = -15% < 0%. parameter setting additional information 1002 ext2 commands seq prog start, stop, direction commands for ext2 1102 ext1/ext2 sel ext2 ext2 activation 1106 ref2 select ai1+seq prog addition of analog input ai1 and sequence programming output as ref2 1201 const speed sel not sel deactivation of constant speeds 1401 relay output 1 seq prog relay output ro control as defined by parameter 8423 /.../ 8493 1601 run enable not sel deactivation of run enable 1805 do signal seq prog digital output do control as defined by parameter 8423 /.../ 8493 2102 stop function ramp ramp stop 2201 acc/dec 1/2 sel seq prog ramp as defined by parameter 8422 /.../ 8492 2202 acceler time 1 1 s acceleration/deceleration ramp pair 1 2203 deceler time 1 0 s 2205 acceler time 2 20 s acceleration/deceleration ramp pair 2 2206 deceler time 2 20 s 2207 ramp shape 2 5 s shape of the acceleration/deceleration ramp 2 3201 superv 1 param 171 sequence counter (signal 0171 seq cycle cntr) supervision 3202 superv 1 lim lo 30 supervision low limit 3203 superv 1 lim hi 30 supervision high limit 8401 seq prog enable ext2 sequence programming enabled in ext2 8402 seq prog start di1 sequence programming activation through digital input (di1) 8404 seq prog reset di1(inv) sequence programming reset through inverted digital input di1(inv) 8406 seq logic val 1 di4 logic value 1 8407 seq logic oper 1 and operation between logic value 1 and 2 8408 seq logic val 2 di5 logic value 2 8415 cycle cnt loc st5 to next sequence counter activation, i.e. sequence count increases every time the state changes from state 5 to state 6. 8416 cycle cnt rst state 1 sequence counter reset during state transition to state 1
program features 139 st1 st2 st3 st4 additional information par. setting par. setting par. setting par. setting 8420 st1 ref sel 50% 8430 65% 8440 60% 8450 35% state reference 8421 st1 commands start frw 8431 start frw 8441 start frw 8451 start frw start, stop and direction commands 8422 st1 ramp -0.2 (ramp pair 2) 8432 1.5 s 8442 0 s 8452 1.5 s acceleration/ deceleration ramp time 8423 st1 out control r=0,d=0, ao=0 8433 ao=0 8443 ao=0 8453 ao=0 relay, digital and analog output control 8424 st1 change dly 0 s 8434 2 s 8444 0.2 s 8454 2 s state change delay 8425 st1 trig to st 2 enter setpnt 8435 enter setpnt 8445 enter setpnt 8455 enter setpnt state change trigger 8426 st1 trig to st n not sel 8436 change dly 8446 change dly 8456 change dly 8427 st1 state n state 1 8437 state 8 8447 state 8 8457 state 8 st5 st6 st7 st8 additional information par. setting par. setting par. setting par. setting 8460 st5 ref sel 40% 8470 65% 8480 0% 8490 0% state reference 8461 st5 commands start frw 8471 start frw 8481 drive stop 8491 drive stop start, stop and direction commands 8462 st5 ramp 0 s 8472 1.5 s 8482 -0.1 (ramp pair 1) 8492 -0.1 (ramp pair 1) acceleration/ deceleration ramp time 8463 st5 out control ao=0 8473 ao=0 8483 do=1 8493 ro=1 relay, digital and analog output control 8464 st5 change dly 0.2 s 8474 0 s 8484 0 s 8494 0 s state change delay 8465 st5 trig to st6 enter setpnt 8475 not sel 8485 not sel 8495 logic val state change trigger 8466 st5 trig to st n suprv1 over 8476 change dly 8486 logic val 8496 not sel 8467 st5 state n state 7 8477 state 2 8487 state 1 8497 state 1
program features 140
actual signals and parameters 141 actual signals and parameters what this chapter contains the chapter describes the actual signals and parameters and gives the fieldbus equivalent values for each signal/parameter. terms and abbreviations fieldbus addresses for fpba-01 profibus adapter, fdna-01 devicenet adapter and fcan-01 canopen adapter, see the fieldbus adapter user?s manual. fieldbus equivalent example: if 2017 max torq 1 is set from external control system, an integer value of 1 corresponds to 0.1%. all the read and sent values are limited to 16 bits (-32768...32767). term definition actual signal signal measured or calculated by the drive. can be monitored by the user. no user setting possible. groups 01...04 contain actual signals. def parameter default value parameter a user-adjustable operation instruction of the drive. groups 10...99 contain parameters. note: parameter selections are shown on the basic control panel as integer values. e.g. parameter 1001 ext1 commands selection comm is shown as value 10 (which is equal to the fieldbus equivalent fbeq). fbeq fieldbus equivalent: the scaling between the value and the integer used in serial communication.
actual signals and parameters 142 default values with different macros when application macro is changed ( 9902 applic macro), the software updates the parameter values to their default values. the following table includes the parameter default values for different macros. for other parameters, the default values are the same for all macros. see the following parameter list. index name/selection abb standard 3-wire alternate motor pot hand/ auto pid control torq ctrl 1001 ext1 commands di1,2 di1p,2p,3 di1f,2r di1,2 di1,2 di1 di1,2 1002 ext2 commands not sel not sel not sel not sel di5,4 di5 di1,2 1003 direction request request request request request forward request 1102 ext1/ext2 sel ext1 ext1 ext1 ext1 di3 di2 di3 1103 ref1 select ai1 ai1 ai1 di3u,4d(n c) ai1 ai1 ai1 1106 ref2 select ai2 ai2 ai2 ai2 ai2 pid1out ai2 1201 const speed sel di3,4 di4,5 di3,4 di5 not sel di3 di4 1304 minimum ai2 0 0 0 0 20 20 20 1501 ao1 content sel 103 102 102 102 102 102 102 1601 run enable not sel not sel not sel not sel not sel di4 not sel 2201 acc/dec 1/2 sel di5 not sel di5 not sel not sel not sel di5 3201 superv 1 param 103 102 102 102 102 102 102 3401 signal1 param 103 102 102 102 102 102 102 9902 applic macro abb standard 3-wire alternate motor pot hand/ auto pid ctrl torque ctrl 9904 motor ctrl mode scalar: freq vector: speed vector: speed vector: speed vector: speed vector: speed vector: torq
actual signals and parameters 143 actual signals actual signals no. name/value description fbeq 01 operating data basic signals for monitoring the drive (read-only) 0101 speed & dir calculated motor speed in rpm. a negative value indicates reverse direction. 1 = 1 rpm 0102 speed calculated motor speed in rpm 1 = 1 rpm 0103 output freq calculated drive output frequency in hz. (shown by default on the panel output mode display.) 1 = 0.1 hz 0104 current measured motor current in a. (shown by default on the panel output mode display.) 1 = 0.1 a 0105 torque calculated motor torque in percent of the motor nominal torque 1 = 0.1% 0106 power measured motor power in kw 1 = 0.1 kw 0107 dc bus voltage measured intermediate circuit voltage in vdc 1 = 1 v 0109 output voltage calculated motor voltage in vac 1 = 1 v 0110 drive temp measured igbt temperature in c 1 = 0.1c 0111 external ref 1 external reference ref1 in rpm or hz. unit depends on parameter 9904 motor ctrl mode setting. 1 = 0.1 hz / 1 rpm 0112 external ref 2 external reference ref2 in percent. depending on the use, 100% equals the maximum motor speed, nominal motor torque, or maximum process reference. 1 = 0.1% 0113 ctrl location active control location. (0) local; (1) ext1; (2) ext2. see section local control vs. external control on page 97 . 1 = 1 0114 run time (r) elapsed drive running time counter (hours). the counter can be reset by pressing the up and down buttons simultaneously when the control panel is in parameter mode. 1 = 1 h 0115 kwh counter (r) kwh counter. the counter can be reset by pressing up and down buttons simultaneously when the control panel is in parameter mode. 1 = 1 kwh 0120 ai1 relative value of analog input ai1 in percent 1 = 0.1% 0121 ai2 relative value of analog input ai2 in percent 1 = 0.1% 0124 ao1 value of analog output ao in ma 1 = 0.1 ma 0126 pid 1 output output value of the process pid1 controller in percent 1 = 0.1% 0127 pid 2 output output value of the pid2 controller in percent 1 = 0.1% 0128 pid 1 setpnt setpoint signal (reference) for the process pid1 controller. unit depends on parameter 4006 unit, 4007 unit scale and 4027 pid 1 param set settings. - 0129 pid 2 setpnt setpoint signal (reference) for the pid2 controller. unit depends on parameter 4106 unit and 4107 unit scale settings. - 0130 pid 1 fbk feedback signal for the process pid1 controller. unit depends on parameter 4006 unit, 4007 unit scale and 4027 pid 1 param set settings. - 0131 pid 2 fbk feedback signal for the pid2 controller. unit depends on parameter 4106 unit and 4107 unit scale settings. - 0132 pid 1 deviation deviation of the process pid1 controller, i.e. the difference between the reference value and the actual value. unit depends on parameter 4006 unit, 4007 unit scale and 4027 pid 1 param set settings. -
actual signals and parameters 144 0133 pid 2 deviation deviation of the pid2 controller, i.e. the difference between the reference value and the actual value. unit depends on parameter 4106 unit and 4107 unit scale settings. - 0134 comm ro word relay output control word through fieldbus (decimal). see parameter 1401 relay output 1. 1 = 1 0135 comm value 1 data received from fieldbus 1 = 1 0136 comm value 2 data received from fieldbus 1 = 1 0137 process var 1 process variable 1 defined by parameter group 34 panel display - 0138 process var 2 process variable 2 defined by parameter group 34 panel display - 0139 process var 3 process variable 3 defined by parameter group 34 panel display - 0140 run time elapsed time counter (thousands of hours). runs when the drive is running. counter cannot be reset. 1 = 0.01 kh 0141 mwh counter mwh counter. counter cannot be reset. 1 = 1 mwh 0142 revolution cntr motor revolution counter (millions of revolutions). the counter can be reset by pressing up and down buttons simultaneously when the control panel is in parameter mode. 1 = 1 mrev 0143 drive on time hi drive control board power-on time in days. counter cannot be reset. 1 = 1 days 0144 drive on time lo drive control board power-on time in 2 second ticks (30 ticks = 60 seconds). counter cannot be reset. 0145 motor temp measured motor temperature. unit depends on the sensor type selected by group 35 motor temp meas parameters. 1 = 1 0146 mech angle calculated mechanical angle 1 = 1 0147 mech revs mechanical revolutions, i.e. the motor shaft revolutions calculated by the encoder 1 = 1 0148 z pls detected encoder zero pulse detector. 0 = not detected, 1 = detected. 1 = 1 0158 pid comm value 1 data received from fieldbus for pid control (pid1 and pid2) 1 = 1 0159 pid comm value 2 data received from fieldbus for pid control (pid1 and pid2) 1 = 1 0160 di 1-5 status status of digital inputs. example: 10000 = di1 is on, di2...di5 are off. 0161 pulse input freq value of frequency input in hz 1 = 1 hz 0162 ro status status of relay output. 1 = ro is energised, 0 = ro is de-energized. 1 = 1 0163 to status status of transistor output, when transistor output is used as a digital output. 1 = 1 0164 to frequency transistor output frequency, when transistor output is used as a frequency output. 1 = 1 hz 0165 timer value timer value of timed start/stop. see parameter group 19 timer & counter . 1 = 0.01 s 0166 counter value pulse counter value of counter start/stop. see parameter group 19 timer & counter . 1 = 1 0167 seq prog sts status word of the sequence programming: bit 0 = enabled (1 = enabled) bit 1 = started bit 2 = paused bit 3 = logic value (logic operation defined by parameters 8406 ? 8410 ). 1 = 1 0168 seq prog state active state of the sequence programming. 1...8 = state 1...8. 1 = 1 actual signals no. name/value description fbeq
actual signals and parameters 145 0169 seq prog timer current state time counter of the sequence programming 0170 seq prog ao val analog output control values defined by sequence programming. see parameter 8423 st1 out control. 1 = 0.1% 0171 seq cycle cntr executed sequence counter of the sequence programming. see parameters 8415 cycle cnt loc and 8416 cycle cnt rst. 1 = 1 0172 abs torque calculated absolute value of the motor torque in percent of the motor nominal torque 1 = 0.1% 03 fb actual signals data words for monitoring the fieldbus communication (read-only). each signal is a 16-bit data word. data words are displayed on the panel in hexadecimal format. 0301 fb cmd word 1 a 16-bit data word. see section dcu communication profile on page 262 . 0302 fb cmd word 2 a 16-bit data word. see section dcu communication profile on page 262 0303 fb sts word 1 a 16-bit data word. see section dcu communication profile on page 262 . 0304 fb sts word 2 a 16-bit data word. see section dcu communication profile on page 262 0305 fault word 1 a 16-bit data word. for the possible causes and remedies and fieldbus equivalents, see chapter fault tracing . bit 0 = overcurrent bit 1 = dc overvolt bit 2 = dev overtemp bit 3 = short circ bit 4 = reserved bit 5 = dc undervolt bit 6 = ai1 loss bit 7 = ai2 loss bit 8= mot overtemp bit 9 = panel loss bit 10 = id run fail bit 11 = motor stall bit 12 = reserved bit 13 = ext fault 1 bit 14 = ext fault 2 bit 15 = earth fault 0306 fault word 2 a 16-bit data word. for the possible causes and remedies and fieldbus equivalents, see chapter fault tracing . bit 0 = underload bit 1 = therm fail bit 2...3 = reserved bit 4 = curr meas bit 5 = supply phase bit 6 = encoder err bit 7 = overspeed bit 8 = reserved actual signals no. name/value description fbeq
actual signals and parameters 146 bit 9 = drive id bit 10 = config file bit 11 = serial 1 err bit 12 = efb con file. configuration file reading error. bit 13 = force trip bit 14 = motor phase bit 15 = outp wiring 0307 fault word 3 a 16-bit data word. for the possible causes and remedies and fieldbus equivalents, see chapter fault tracing . bit 0...2 = reserved bit 3 = incompatible sw bit 4...10 = reserved bit 11 = mmio id error bit 12 = dsp stack error bit 13 = dsp t1...t3 overload bit 14 = serf corrupt /serf macro bit 15 = par pcu 1/2 / par hzrpm / par ai scale / par ao scale / par fbus miss / par custom u/f 0308 alarm word 1 a 16-bit data word. for the possible causes and remedies and fieldbus equivalents, see chapter fault tracing . an alarm can be reset by resetting the whole alarm word: write zero to the word. bit 0 = overcurrent bit 1 = overvoltage bit 2 = undervoltage bit 3 = dirlock bit 4 = io comm bit 5 = ai1 loss bit 6 = ai2 loss bit 7 = panel loss bit 8 = device overtemp bit 9 = motor temp bit 10 = underload bit 11 = motor stall bit 12 = autoreset bit 13...15 = reserved 0309 alarm word 2 a 16-bit data word. for the possible causes and remedies and fieldbus equivalents, see chapter fault tracing . an alarm can be reset by resetting the whole alarm word: write zero to the word. bit 0 = reserved bit 1 = pid sleep bit 2 = id run actual signals no. name/value description fbeq
actual signals and parameters 147 bit 3 = reserved bit 4 = start enable 1 missing bit 5 = start enable 2 missing bit 6 = emergency stop bit 7 = encoder error bit 8 = first start bit 9 = input phase loss bit 10...15 = reserved 04 fault history fault history (read-only) 0401 last fault code of the latest fault. see chapter fault tracing for the codes. 0 = fault history is clear (on panel display = no record). 1 = 1 0402 fault time 1 day on which the latest fault occurred. format: date if the real time clock is operating. / the number of days elapsed after the power-on if the real time clock is not used, or was not set. 1 = 1 days 0403 fault time 2 time at which the latest fault occurred. format on the assistant panel: real time (hh:mm:ss) if the real time clock is operating. / time elapsed after the power-on (hh:mm:ss minus the whole days stated by signal 0402 fault time 1) if real time clock is not used, or was not set. format on the basic panel: time elapsed after power-on in 2 second ticks (minus the whole days stated by signal 0402 fault time 1). 30 ticks = 60 seconds. e.g. value 514 equals 17 minutes and 8 seconds (= 514/30). 0404 speed at flt motor speed in rpm at the time the latest fault occurred 1 = 1 rpm 0405 freq at flt frequency in hz at the time the latest fault occurred 1 = 0.1 hz 0406 voltage at flt intemediate circuit voltage in vdc at the time the latest fault occurred 1 = 0.1 v 0407 current at flt motor current in a at the time the latest fault occurred 1 = 0.1 a 0408 torque at flt motor torque in percent of the motor nominal torque at the time the latest fault occurred 1 = 0.1% 0409 status at flt drive status in hexadecimal format at the time the latest fault occurred 0412 previous fault 1 fault code of the 2nd latest fault. see chapter fault tracing for the codes. 1 = 1 0413 previous fault 2 fault code of the 3rd latest fault. see chapter fault tracing for the codes. 1 = 1 0414 di 1-5 at flt status of digital inputs di1?5 at the time the latest fault occurred (binary) actual signals no. name/value description fbeq
actual signals and parameters 148 parameters ? short form list parameters ? short form list index name/selection description def custom 10 start/stop/dir the sources for external start, stop and direction control 1001 ext1 commands defines the connections and the source for the start, stop and direction commands for external control location 1 (ext1). di1,2 1002 ext2 commands defines the connections and the source for the start, stop and direction commands for external control location 2 (ext2). not sel 1003 direction enables the control of rotation direction of the motor, or fixes the direction. request 1010 jogging sel defines the signal that activates the jogging function. not sel 11 reference select panel reference type, external control location selection and external reference sources and limits 1101 keypad ref sel selects the type of the reference in local control mode. ref1 1102 ext1/ext2 sel defines the source from which the drive reads the signal that selects between the two external control locations, ext1 or ext2. ext1 1103 ref1 select selects the signal source for external reference ref1. ai1 1104 ref1 min defines the minimum value for external reference ref1. 0 1105 ref1 max defines the maximum value for external reference ref1. eur: 50 / us: 60 1106 ref2 select selects the signal source for external reference ref2. ai2 1107 ref2 min defines the minimum value for external reference ref2. 0 1108 ref2 max defines the maximum value for external reference ref2. 100 12 constant speeds constant speed selection and values. 1201 const speed sel activates the constant speeds or selects the activation signal. di3,4 1202 const speed 1 defines constant speed (or drive output frequency) 1. eur: 5 / us: 6 1203 const speed 2 defines constant speed (or drive output frequency) 2. eur: 10 / us: 12 1204 const speed 3 defines constant speed (or drive output frequency) 3. eur: 15 / us: 18 1205 const speed 4 defines constant speed (or drive output frequency) 4. eur: 20 / us: 24 1206 const speed 5 defines constant speed (or drive output frequency) 5. eur: 25 / us: 30 1207 const speed 6 defines constant speed (or drive output frequency) 6. eur: 40 / us: 48 1208 const speed 7 defines constant speed (or drive output frequency) 7. eur: 50 / us: 60 1209 timed mode sel selects timed function activated speed into use when parameter 1201 const speed sel selection is timed fun1&2. cs1/2/3/4 13 analogue inputs analog input signal processing 1301 minimum ai1 defines the minimum %-value that corresponds to minimum ma/ (v) signal for analog input ai1. 0,01 1302 maximum ai1 defines the maximum %-value that corresponds to maximum ma/(v) signal for analog input ai1. 100 1303 filter ai1 defines the filter time constant for analog input ai1, i.e the time within 63% of a step change is reached. 0.1 1304 minimum ai2 defines the minimum %-value that corresponds to minimum ma/ (v) signal for analog input ai2. 0,01 1305 maximum ai2 defines the maximum %-value that corresponds to maximum ma/(v) signal for analog input ai2. 100 1306 filter ai2 defines the filter time constant for analog input ai2. 0.1 14 relay outputs status information indicated through relay output, and relay operating delays 1401 relay output 1 selects a drive status indicated through relay output ro. fault(-1) 1404 ro 1 on delay defines the operation delay for relay output ro. 0 1405 ro 1 off delay defines the release delay for relay output ro. 0 15 analogue outputs selection of the actual signals to be indicated through analog output and output signal processing 1501 ao1 content sel connects a drive signal to analog output ao. 103
actual signals and parameters 149 1502 ao1 content min defines the minimum value for signal selected with parameter 1501 ao1 content sel. - 1503 ao1 content max defines the maximum value for signal selected with parameter 1501 ao1 content sel. - 1504 minimum ao1 defines the minimum value for the analog output signal ao. 0 1505 maximum ao1 defines the maximum value for the analog output signal ao. 20 1506 filter ao1 defines the filter time constant for analog output ao, i.e the time within 63% of a step change is reached. 0.1 16 system controls run enable, parameter lock etc. 1601 run enable selects a source for the external run enable signal. not sel 1602 parameter lock selects the state of the parameter lock. open 1603 pass code selects the pass code for the parameter lock. 0 1604 fault reset sel selects the source for the fault reset signal. keypad 1605 user par set chg enables the change of the user parameter set through a digital input. not sel 1606 local lock disables entering local control mode or selects the source for the local control mode lock signal. not sel 1607 param save saves the valid parameter values to the permanent memory. done 1608 start enable 1 selects the source for the start enable 1 signal. not sel 1609 start enable 2 selects the source for the start enable 2 signal. not sel 1610 display alarms activates/deactivates alarms. no 1611 parameter view selects the parameter view, i.e which parameters are shown. default 18 freq in & tran out frequency input and transistor output signal processing. 1801 freq input min defines the minimum input value when di5 is used as a frequency input. 0 1802 freq input max defines the maximum input value when di5 is used as a frequency input. 1000 1803 filter freq in defines the filter time constant for frequency input. 0.1 1804 to mode selects the operation mode for the transistor output to. digital 1805 do signal selects a drive status indicated through digital output do. fault(-1) 1806 do on delay defines the operation delay for digital output do. 0 1807 do off delay defines the release delay for digital output do. 0 1808 fo content sel selects a drive signal to be connected to frequency output fo. 104 1809 fo content min defines the minimum frequency output fo signal value. - 1810 fo content max defines the maximum frequency output fo signal value. - 1811 minimum fo defines the minimum value for frequency output fo. 10 1812 maximum fo defines the maximum value for frequency output fo. 1000 1813 filter fo defines the filter time constant for frequency output fo. 0.1 19 timer & counter timer and counter for start and stop control 1901 timer delay defines the time delay for the timer. 10 1902 timer start selects the source for the timer start signal. not sel 1903 timer reset selects the source for the timer reset signal. not sel 1904 counter enable selects the source for the counter enable signal. disabled 1905 counter limit defines the counter limit. 1000 1906 counter input selects the input signal source for the counter. pls in(di5) 1907 counter reset selects the source for the counter reset signal. not sel 1908 counter res val defines the value for the counter after reset. 0 1909 count divider defines the divider for the pulse counter. 0 1910 count direction defines the source for the counter direction selection. up 1911 cntr s/s command selects the source for the drive start/stop command when parameter 1001 ext1 commands value is set to counter start / counter stop. not sel parameters ? short form list index name/selection description def custom
actual signals and parameters 150 20 limits drive operation limits. 2001 minimum speed defines the allowed minimum speed. 0 2002 maximum speed defines the allowed maximum speed. eur: 1500 / us: 1800 2003 max current defines the allowed maximum motor current. 1.8 2 i2n 2005 overvolt ctrl activates or deactivates the overvoltage control of the intermediate dc link. enable 2006 undervolt ctrl activates or deactivates the undervoltage control of the intermediate dc link. enable(time) 2007 minimum freq defines the minimum limit for the drive output frequency. 0 2008 maximum freq defines the maximum limit for the drive output frequency. eur: 50 / us: 60 2013 min torque sel selects the minimum torque limit for the drive. min torque 1 2014 max torque sel selects the maximum torque limit for the drive. max torque 1 2015 min torque 1 defines minimum torque limit 1 for the drive. -300 2016 min torque 2 defines minimum torque limit 2 for the drive. -300 2017 max torque 1 defines maximum torque limit 1 for the drive. 300 2018 max torque 2 defines maximum torque limit 2 for the drive. 300 2019 brake chopper phased out parameter in sw version 2.51b and later. 2020 brake chopper selects the brake chopper control. inbuilt 21 start/stop start and stop modes of the motor 2101 start function selects the motor starting method. auto 2102 stop function selects the motor stop function. coast 2103 dc magn time defines the pre-magnetising time. 0.3 2104 dc hold ctl activates the dc hold or dc braking function. not sel 2105 dc hold speed defines the dc hold speed. 5 2106 dc curr ref defines the dc hold current. 30 2107 dc brake time defines the dc brake time. 0 2108 start inhibit enables the start inhibit function. off 2109 emer stop sel selects the source for the external emergency stop command. not sel 2110 torq boost curr defines the maximum supplied current during torque boost. 100 2111 stop signal dly defines the stop signal delay time when parameter 2102 stop function is set to speed comp. 0 2112 zero speed delay defines the delay for the zero speed delay function. 0 22 accel/decel acceleration and deceleration times 2201 acc/dec 1/2 sel defines the source from which the drive reads the signal that selects between the two ramp pairs. di5 2202 acceler time 1 defines the acceleration time 1. 5 2203 deceler time 1 defines the deceleration time 1. 5 2204 ramp shape 1 selects the shape of the acceleration/deceleration ramp 1. 0 2205 acceler time 2 defines the acceleration time 2. 60 2206 deceler time 2 defines the deceleration time 2. 60 2207 ramp shape 2 selects the shape of the acceleration/deceleration ramp 2. 0 2208 emer dec time defines the time within the drive is stopped if an emergency stop is activated. 1 2209 ramp input 0 defines the source for forcing the ramp input to zero. not sel 23 speed control speed controller variables. 2301 prop gain defines a relative gain for the speed controller. 10 2302 integration time defines an integration time for the speed controller. 39204 2303 derivation time defines the derivation time for the speed controller. 0 2304 acc compensation defines the derivation time for acceleration/(deceleration) compensation. 0 2305 autotune run start automatic tuning of the speed controller. off parameters ? short form list index name/selection description def custom
actual signals and parameters 151 24 torque control torque control variables 2401 torq ramp up defines the torque reference ramp up time. 0 2402 torq ramp down defines the torque reference ramp down time. 0 25 critical speeds speed bands within which the drive is not allowed to operate. 2501 crit speed sel activates/deactivates the critical speeds function. off 2502 crit speed 1 lo defines the minimum limit for critical speed/frequency range 1. 0 2503 crit speed 1 hi defines the maximum limit for critical speed/frequency range 1. 0 2504 crit speed 2 lo see parameter 2502 crit speed 1 lo. 0 2505 crit speed 2 hi see parameter 2503 crit speed 1 hi. 0 2506 crit speed 3 lo see parameter 2502 crit speed 1 lo. 0 2507 crit speed 3 hi see parameter 2503 crit speed 1 hi. 0 26 motor control motor control variables 2601 flux opt enable activates/deactivates the flux optimisation function. off 2602 flux braking activates/deactivates the flux braking function. off 2603 ir comp volt defines the output voltage boost at zero speed (ir compensation). varies 2604 ir comp freq defines the frequency at which the ir compensation is 0 v. 80 2605 u/f ratio selects the voltage to frequency (u/f) ratio below the field weakening point. linear 2606 switching freq defines the switching frequency of the drive. 4 2607 switch freq ctrl activates the switching frequency control. on 2608 slip comp ratio defines the slip gain for the motor slip compensation control. 0 2609 noise smoothing enables the noise smoothing function. disable 2610 user defined u1 defines the first voltage point of the custom u/f curve at the frequency defined by parameter 2611. user defined f1. 2611 user defined f1 defines the first frequency point of the custom u/f curve. 10 2612 user defined u2 defines the second voltage point of the custom u/f curve at the frequency defined by parameter 2613. user defined f2. 2613 user defined f2 defines the second frequency point of the custom u/f curve. 20 2614 user defined u3 defines the third voltage point of the custom u/f curve at the frequency defined by parameter 2615 user defined f3. 2615 user defined f3 defines the third frequency point of the custom u/f curve. 25 2616 user defined u4 defines the fourth voltage point of the custom u/f curve at the frequency defined by parameter 2617 user defined f4. 2617 user defined f4 defines the fourth frequency point of the custom u/f curve. 40 2618 fw voltage defines the voltage of the u/f curve when frequency is equal to or exceeds the motor nominal frequency (9907 motor nom freq). 95% of un 29 maintenance trig maintenance triggers 2901 cooling fan trig defines the trigger point for the drive cooling fan run time counter. 0 2902 cooling fan act defines the actual value for the cooling fan run time counter. 0 2903 revolution trig defines the trigger point for the motor revolution counter. 0 2904 revolution act defines the actual value for the motor revolution counter. 0 2905 run time trig defines the trigger point for the drive run time counter. 0 2906 run time act defines the actual value for the drive run time counter. 0 2907 user mwh trig defines the trigger point for the drive power consumption counter. 0 2908 user mwh act defines the actual value of the drive power consumption counter. 0 30 fault functions programmable protection functions 3001 ai actual signals and parameters 152 3002 panel comm err selects how the drive reacts to a control panel communication break. fault 3003 external fault 1 selects an interface for an external fault 1 signal. not sel 3004 external fault 2 selects an interface for an external fault 2 signal. not sel 3005 mot therm prot selects how the drive reacts when the motor overtemperature is detected. fault 3006 mot therm time defines the thermal time constant for the motor thermal model. 500 3007 mot load curve defines the load curve together with parameters 3008 zero speed load and 3009 break point freq. 100 3008 zero speed load defines the load curve together with parameters 3007 mot load curve and 3009 break point freq. 70 3009 break point freq defines the load curve together with parameters 3007 mot load curve and 3008 zero speed load. 35 3010 stall function selects how the drive reacts to a motor stall condition. not sel 3011 stall frequency defines the frequency limit for the stall function. 20 3012 stall time defines the time for the stall function. 20 3013 underload func selects how the drive reacts to underload. not sel 3014 underload time defines the time limit for the underload function. 20 3015 underload curve selects the load curve for the underload function. 1 3016 supply phase selects how the drive reacts to supply phase loss, i.e. when dc voltage ripple is excessive. fault 3017 earth fault selects how the drive reacts when an earth (ground) fault is detected in the motor or the motor cable. enable 3018 comm fault func selects how the drive reacts in a fieldbus communication break. not sel 3019 comm fault time defines the time delay for the fieldbus communication break supervision. 3 3021 ai1 fault limit defines a fault level for analog input ai1. minimum ai1. 3022 ai2 fault limit defines a fault level for analog input ai2. minimum ai2. 3023 wiring fault selects how the drive reacts when incorrect input power and motor cable connection is detected. enable 31 automatic reset automatic fault reset. 3101 nr of trials defines the number of automatic fault resets the drive performs within the time defined by parameter 3102 trial time. 0 3102 trial time defines the time for the automatic fault reset function. 30 3103 delay time defines the time that the drive will wait after a fault before attempting an automatic reset. 0 3104 ar overcurrent activates/deactivates the automatic reset for the overcurrent fault. disable 3105 ar overvoltage activates/deactivates the automatic reset for the intermediate link overvoltage fault. disable 3106 ar undervoltage activates/deactivates the automatic reset for the intermediate link undervoltage fault. disable 3107 ar ai actual signals and parameters 153 3206 superv 2 lim hi defines the high limit for the second supervised signal selected by parameter 3204 superv 2 param. - 3207 superv 3 param selects the third supervised signal. 105 3208 superv 3 lim lo defines the low limit for the third supervised signal selected by parameter 3207 superv 3 param. - 3209 superv 3 lim hi defines the high limit for the third supervised signal selected by parameter 3207 superv 3 param. - 33 information firmware package version, test date etc. 3301 firmware displays the version of the firmware package. 3302 loading package displays the version of the loading package. type dependent 3303 test date displays the test date. 00.00 3304 drive rating displays the drive current and voltage ratings. 0x0000 3305 parameter table displays the version of the parameter table used in the drive. 34 panel d isplay selection of actual signals to be displayed on the panel 3401 signal1 param selects the first signal to be displayed on the control panel in display mode. 103 3402 signal1 min defines the minimum value for the signal selected by parameter 3401 signal1 param. - 3403 signal1 max defines the maximum value for the signal selected by parameter 3401 signal1 param. - 3404 output1 dsp form defines the format for the displayed signal (selected by par. 3401 signal1 param). direct 3405 output1 unit selects the unit for the for the displayed signal selected by parameter 3401 signal1 param. hz 3406 output1 min sets the minimum display value for the signal selected by parameter 3401 signal1 param. - 3407 output1 max sets the maximum display value for the signal selected by parameter 3401 signal1 param. - 3408 signal2 param selects the second signal to be displayed on the control panel in display mode. 104 3409 signal2 min defines the minimum value for the signal selected by parameter 3408 signal2 param. - 3410 signal2 max defines the maximum value for the signal selected by parameter 3408 signal2 param. - 3411 output2 dsp form defines the format for the displayed signal selected by par. 3408 signal2 param. direct 3412 output2 unit selects the unit for the for the displayed signal selected by parameter 3408 signal2 param. - 3413 output2 min sets the minimum display value for the signal selected by parameter 3408 signal2 param. - 3414 output2 max sets the maximum display value for the signal selected by parameter 3408 signal2 param. - 3415 signal3 param selects the third signal to be displayed on the control panel in display mode. 105 3416 signal3 min defines the minimum value for the signal selected by parameter 3415. - 3417 signal3 max defines the maximum value for the signal selected by parameter 3415 signal3 param. - 3418 output3 dsp form defines the format for the displayed signal selected by par. 3415 signal3 param. direct 3419 output3 unit selects the unit for the for the displayed signal selected by parameter 3415 signal3 param. - 3420 output3 min sets the minimum display value for the signal selected by parameter 3415 signal3 param. - parameters ? short form list index name/selection description def custom
actual signals and parameters 154 3421 output3 max sets the maximum display value for the signal selected by parameter 3415 signal3 param. - 35 motor temp meas motor temperature measurement. 3501 sensor type activates the motor temperature measurement function and selects the sensor type. none 3502 input selection selects the source for the motor temperature measurement signal. ai1 3503 alarm limit defines the alarm limit for motor temperature measurement. 0 3504 fault limit defines the fault trip limit for motor temperature measurement. 0 3505 ao excitation enables current feed from analog output ao. disable 36 timed functions time periods 1 to 4 and booster signal. 3601 timers enable selects the source for the timed function enable signal. not sel 3602 start time 1 defines the daily start time 1. 0 3603 stop time 1 defines the daily stop time 1. 0 3604 start day 1 defines the start day 1. monday 3605 stop day 1 defines the stop day 1. monday 3606 start time 2 see parameter 3602 start time 1. 3607 stop time 2 see parameter 3603 stop time 1. 3608 start day 2 see parameter 3604 start day 1. 3609 stop day 2 see parameter 3605 stop day 1. 3610 start time 3 see parameter 3602 start time 1. 3611 stop time 3 see parameter 3603 stop time 1. 3612 start day 3 see parameter 3604 start day 1. 3613 stop day 3 see parameter 3605 stop day 1. 3614 start time 4 see parameter 3602 start time 1. 3615 stop time 4 see parameter 3603 stop time 1. 3616 start day 4 see parameter 3604 start day 1. 3617 stop day 4 see parameter 3605 stop day 1. 3622 booster sel selects the source for the booster activation signal. not sel 3623 booster time defines the time inside which the booster is deactivated after the booster activation signal is switched off. 0 3626 timed func 1 src selects the time periods for timed func 1 scr. not sel 3627 timed func 2 src see parameter 3626 timed func 1 src. 3628 timed func 3 src see parameter 3626 timed func 1 src. 3629 timed func 4 src see parameter 3626 timed func 1 src. 40 process pid set 1 process pid (pid1) control parameter set 1. 4001 gain defines the gain for the process pid controller. 1 4002 integration time defines the integration time for the process pid1 controller. 60 4003 derivation time defines the derivation time for the process pid controller. 0 4004 pid deriv filter defines the filter time constant for the derivative part of the process pid controller. 1 4005 error value inv selects the relationship between the feedback signal and drive speed. no 4006 units selects the unit for pid controller actual values. % 4007 unit scale defines the decimal point location for the display parameter selected by parameter 4006 units. 1 4008 0% value defines together with parameter 4009 100% value the scaling applied to the pid controller?s actual values. 0 4009 100% value defines together with parameter 4008 0% value the scaling applied to the pid controller?s actual values. 100 4010 set point sel selects the source for the process pid controller reference signal. ai1 parameters ? short form list index name/selection description def custom
actual signals and parameters 155 4011 internal setpnt selects a constant value as process pid controller reference, when parameter 4010 set point sel value is set to internal. 40 4012 setpoint min defines the minimum value for the selected pid reference signal source. 0 4013 setpoint max defines the maximum value for the selected pid reference signal source. 100 4014 fbk sel selects the process actual value (feedback signal) for the process pid controller. act1 4015 fbk multiplier defines an extra multiplier for the value defined by parameter 4014 fbk sel. 0 4016 act1 input defines the source for actual value 1 (act1). ai2 4017 act2 input defines the source for actual value act2. ai2 4018 act1 minimum sets the minimum value for act1. 0 4019 act1 maximum defines the maximum value for the variable act1 if an analog input is selected as a source for act1. 100 4020 act2 minimum see parameter 4018 act1 minimum. 0 4021 act2 maximum see parameter 4019 act1 maximum. 100 4022 sleep selection activates the sleep function and selects the source for the activation input. not sel 4023 pid sleep level defines the start limit for the sleep function. 0 4024 pid sleep delay defines the delay for the sleep start function. 60 4025 wake-up dev defines the wake-up deviation for the sleep function. 0 4026 wake-up delay defines the wake-up delay for the sleep function. 0.5 4027 pid 1 param set defines the source from which the drive reads the signal that selects between pid parameter set 1 and 2. set1 41 process pid set 2 process pid (pid1) control parameter set 2. 4101 gain see parameter 4001 gain. 4102 integration time see parameter 4002 integration time. 4103 derivation time see parameter 4003 derivation time. 4104 pid deriv filter see parameter 4004 pid deriv filter. 4105 error value inv see parameter 4005 error value inv. 4106 units see parameter 4006 units. 4107 unit scale see parameter 4007 unit scale. 4108 0% value see parameter 4008 0% value. 4109 100% value see parameter 4009 100% value. 4110 set point sel see parameter 4010 set point sel. 4111 internal setpnt see parameter 4011 internal setpnt. 4112 setpoint min see parameter 4012 setpoint min. 4113 setpoint max see parameter 4013 setpoint max. 4114 fbk sel see parameter 4014 fbk sel. 4115 fbk multiplier see parameter 4015 fbk multiplier. 4116 act1 input see parameter 4016 act1 input. 4117 act2 input see parameter 4017 act2 input. 4118 act1 minimum see parameter 4018 act1 minimum. 4119 act1 maximum see parameter 4018 act1 maximum. 4120 act2 minimum see parameter 4020 act2 minimum. 4121 act2 maximum see parameter 4021 act2 maximum. 4122 sleep selection see parameter 4022 sleep selection. 4123 pid sleep level see parameter 4023 pid sleep level. 4124 pid sleep delay see parameter 4024 pid sleep delay. 4125 wake-up dev see parameter 4025 wake-up dev. 4126 wake-up delay see parameter 4026 wake-up delay. parameters ? short form list index name/selection description def custom
actual signals and parameters 156 42 ext / trim pid external/trim pid (pid2) control. 4201 gain see parameter 4001 gain. 4202 integration time see parameter 4002 integration time. 4203 derivation time see parameter 4003 derivation time. 4204 pid deriv filter see parameter 4004 pid deriv filter. 4205 error value inv see parameter 4005 error value inv. 4206 units see parameter 4006 units. 4207 unit scale see parameter 4007 unit scale. 4208 0% value see parameter 4008 0% value. 4209 100% value see parameter 4009 100% value. 4210 set point sel see parameter 4010 set point sel. 4211 internal setpnt see parameter 4011 internal setpnt. 4212 setpoint min see parameter 4012 setpoint min. 4213 setpoint max see parameter 4013 setpoint max. 4214 fbk sel see parameter 4014 fbk sel. 4215 fbk multiplier see parameter 4015 fbk multiplier. 4216 act1 input see parameter 4016 act1 input. 4217 act2 input see parameter 4017 act2 input. 4218 act1 minimum see parameter 4018 act1 minimum. 4219 act1 maximum see parameter 4018 act1 maximum. 4220 act2 minimum see parameter 4020 act2 minimum. 4221 act2 maximum see parameter 4021 act2 maximum. 4228 activate selects the source for the external pid function activation signal. not sel 4229 offset defines the offset for the external pid controller output. 0 4230 trim mode activates the trim function and selects between the direct and proportional trimming. not sel 4231 trim scale defines the multiplier for the trimming function. 0 4232 correction src selects the trim reference. pid2ref 4233 trim selection selects whether the trimming is used for correcting the speed or torque reference. speed/freq 43 mech brk control control of a mechanical brake. 4301 brake open dly defines the brake open delay (= the delay between the internal open brake command and the release of the motor speed control). 0.20 4302 brake open lvl defines the motor starting torque/current at brake release. 1 4303 brake close lvl defines the brake close speed. 4.0% 4304 forced open lvl defines the speed at brake release. 0 4305 brake magn delay defines motor magnetising time. 0 4306 runtime freq lvl defines the brake close speed. 0 50 encoder encoder connection. 5001 pulse nr states the number of encoder pulses per one revolution. 1024 5002 encoder enable enables the encoder. disable 5003 encoder fault defines the operation of the drive if a failure is detected in communication between the pulse encoder and the pulse encoder interface module, or between the module and the drive. fault 5010 z pls enable enables the encoder zero (z) pulse. zero pulse is used for position reset. disable 5011 position reset enables the position reset. disable 51 ext comm module fieldbus adapter module parameters. 5101 fba type displays the type of the connected fieldbus adapter module. 5102 fb par 2 these parameters are adapter module-specific. ... .... 5126 fb par 26 parameters ? short form list index name/selection description def custom
actual signals and parameters 157 5127 fba par refresh validates any changed adapter module configuration parameter settings. 52 panel c omm communication settings for the control panel port on the drive 5201 station id defines the address of the drive. 1 5202 baud rate defines the transfer rate of the link. 39242 5203 parity defines the use of parity and stop bit(s). 8 none 1 5204 ok messages number of valid messages received by the drive. 0 5205 parity errors number of characters with a parity error received from the modbus link. 0 5206 frame errors number of characters with a framing error received by the modbus link. 0 5207 buffer overruns number of characters wh ich overflow the buffer, i.e. number of characters which exceed the maximum message length, 128 bytes. 0 5208 crc errors number of messages with an crc (cyclic redundancy check) error received by the drive. 0 53 efb protocol embedded fieldbus link settings. 5302 efb station id defines the address of the device. 1 5303 efb baud rate defines the transfer rate of the link. 39242 5304 efb parity defines the use of parity and stop bit(s) and the data length. 8 none 1 5305 efb ctrl profile selects the communication profile. abb drv lim 5306 efb ok messages number of valid messages received by the drive. 0 5307 efb crc errors number of messages with an crc (cyclic redundancy check) error received by the drive. 0 5310 efb par 10 selects an actual value to be mapped to modbus register 40005. 0 5311 efb par 11 selects an actual value to be mapped to modbus register 40006. 0 5312 efb par 12 selects an actual value to be mapped to modbus register 40007. 0 5313 efb par 13 selects an actual value to be mapped to modbus register 40008. 0 5314 efb par 14 selects an actual value to be mapped to modbus register 40009. 0 5315 efb par 15 selects an actual value to be mapped to modbus register 40010. 0 5316 efb par 16 selects an actual value to be mapped to modbus register 40011. 0 5317 efb par 17 selects an actual value to be mapped to modbus register 40012. 0 5318 efb par 18 reserved 0 5319 efb par 19 abb drives profile (abb drv lim or abb drv full) control word. read only copy of the fieldbus control word. 0x0000 5320 efb par 20 abb drives profile (abb drv lim or abb drv full) status word. read only copy of the fieldbus status word. 0x0000 54 fba data in data from drive to fieldbus controlle. 5401 fba data in 1 selects data to be transferred from the drive to the fieldbus controller. 5402 fba data in 2 see 5401 fba data in 1. .... ... ... 5410 fba data in 10 see 5401 fba data in 1. 55 fba data out data from fieldbus controller to drive. 5501 fba data out 1 selects data to be transferred from the fieldbus controller to the drive. 5502 fba data out 2 see 5501 fba data out 1. ... ... ... 5510 fba data out 10 see 5501 fba data out 1. 84 sequence prog sequence programming. 8401 seq prog enable enables sequence programming. disabled 8402 seq prog start selects the source for the sequence programming activation signal. not sel parameters ? short form list index name/selection description def custom
actual signals and parameters 158 8403 seq prog pause selects the source for the sequence programming pause signal. not sel 8404 seq prog reset selects the source for the sequence programming reset signal. not sel 8405 seq st force forces the sequence programming to a selected state. state1 8406 seq logic val 1 defines the source for the logic value 1. not sel 8407 seq logic oper 1 selects the operation between logic value 1 and 2. not sel 8408 seq logic val 2 see parameter 8406 seq logic val 1. not sel 8409 seq logic oper 2 selects the operation between logic value 3 and the result of the first logic operation defined by parameter 8407 seq logic oper 1. not sel 8410 seq logic val 3 see parameter 8406 seq logic val 1. not sel 8411 seq val 1 high defines the high limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai1 high 1. 0 8412 seq val 1 low defines the low limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai1 low 1. 0 8413 seq val 2 high defines the high limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai2 high 1. 0 8414 seq val 2 low defines the low limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai2 low 2. 0 8415 cycle cnt loc activates the cycle counter for sequence programming. not sel 8416 cycle cnt rst selects the source for the cycle counter reset signal (0171 seq cycle cntr). not sel 8420 st1 ref sel selects the source for the sequence programming state 1 reference. 0 8421 st1 commands selects the start, stop and direction for state 1. drive stop 8422 st1 ramp selects the acceleration/deceleration ramp time for sequence programming state 1, i.e. defines the rate of the reference change. 0 8423 st1 out control selects the relay, transistor and analog output control for sequence programming state 1. ao=0 8424 st1 change dly defines the delay time for state 1. 0 8425 st1 trig to st 2 selects the source for the trigger signal which changes the state from state 1 to state 2. not sel 8426 st1 trig to st n selects the source for the trigger signal which changes the state from state 1 to state n. not sel 8427 st1 state n defines the state n. see parameter 8426 st1 trig to st n. state 1 8430 st2 ref sel see parameters 8420?8427. ? 8497 st8 state n 98 options external serial communication activation 9802 comm prot sel activates the external serial communication. not sel 99 start-up data language selection. definition of motor set-up data. 9901 language selects the display language. english 9902 applic macro selects the application macro. abb standard 9904 motor ctrl mode selects the motor control mode. scalar:freq 9905 motor nom volt defines the nominal motor voltage. 230, 400 or 460 9906 motor nom curr defines the nominal motor current. i2n 9907 motor nom freq defines the nominal motor frequency. eur: 50 / us: 60 9908 motor nom speed defines the nominal motor speed. type dependent 9909 motor nom power defines the nominal motor power. pn 9910 id run controls a self-calibration process called the motor id run. off/idmagn 9912 motor nom torque calculated motor nominal torque in nm. 0 9913 motor pole pairs calculated motor pole pair number. 0 parameters ? short form list index name/selection description def custom
actual signals and parameters 159 parameters ? complete descriptions parameters ? complete descriptions index name/selection description def, fbeq 10 start/stop/dir the sources for external start, stop and direction control 1001 ext1 commands defines the connections and the source for the start, stop and direction commands for external control location 1 (ext1). di1,2 not sel no start, stop and direction command source 0 di1 start and stop through digital input di1. 0 = stop, 1 = start. direction is fixed according to parameter 1003 direction (setting request = forward). 1 di1,2 start and stop through digital input di1. 0 = stop, 1 = start. direction through digital input di2. 0 = forward, 1 = reverse. to control direction, parameter 1003 direction setting must be request. 2 di1p,2p pulse start through digital input di1. 0 -> 1: start. (in order to start the drive, digital input di2 must be activated prior to the pulse fed to di1.) pulse stop through digital input di2. 1 -> 0: stop. direction of rotation is fixed according to parameter 1003 direction (setting request = forward). 3 di1p,2p,3 pulse start through digital input di1. 0 -> 1: start. (in order to start the drive, digital input di2 must be activated prior to the pulse fed to di1.) pulse stop through digital input di2. 1 -> 0: stop. direction through digital input di3. 0 = forward, 1 = reverse. to control direction, parameter 1003 direction setting must be request. 4 di1p,2p,3p pulse start forward through digital input di1. 0 -> 1: start forward. pulse start reverse through digital input di2. 0 -> 1: start reverse. (in order to start the drive, digital input di3 must be activated prior to the pulse fed to di1/di2). pulse stop through digital input di3. 1 -> 0: stop. to control the direction, parameter 1003 direction setting must be request. 5 keypad start, stop and direction commands through control panel when ext1 is active. to control the direction, parameter 1003 direction setting must be request. 8 di1f,2r start, stop and direction commands through digital inputs di1 and di2. parameter 1003 direction setting must be request. 9 comm fieldbus interface as the source for the start and stop commands, i.e. control word 0301 fb cmd word 1 bits 0...1. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . 10 timed func 1 timed start/stop control. timed function 1 active = start, timed function 1 inactive = stop. see parameter group 36 timed functions . 11 timed func 2 see selection timed func 1. 12 timed func 3 see selection timed func 1. 13 timed func 4 see selection timed func 1. 14 di5 start and stop through digital input di5. 0 = stop, 1 = start. direction is fixed according to parameter 1003 direction (setting request = forward). 20 di1 di2 operation 00stop 1 0 start forward 01start reverse 11stop
actual signals and parameters 160 di5,4 start and stop through digital input di5. 0 = stop, 1 = start. direction through digital input di4. 0 = forward, 1 = reverse. to control direction, parameter 1003 direction must be request. 21 timer stop stop when timer delay defined by parameter 1901 timer delay has passed. start with timer start signal. source for the signal is selected by parameter 1902 timer start. 22 timer start start when timer delay defined by parameter 1901 timer delay has passed. stop when timer is reset by parameter 1903 timer reset. 23 counter stop stop when counter limit defined by parameter 1905 counter limit has been exceeded. start with counter start signal. source for the signal is selected by parameter 1911 cntr s/s command. 24 counter start start when counter limit defined by parameter 1905 counter limit has been exceeded. stop with counter stop signal. source for the signal is selected by parameter 1911 cntr s/s command. 25 seq prog start, stop and direction commands through sequence programming. see parameter group 84 sequence prog . 26 1002 ext2 commands defines the connections and the source for the start, stop and direction commands for external control location 2 (ext2). not sel see parameter 1001 ext1 commands. 1003 direction enables the control of rotation direction of the motor, or fixes the direction. request forward fixed to forward 1 reverse fixed to reverse 2 request direction of rotation control allowed 3 1010 jogging sel defines the signal that activates the jogging function. see section jogging on page 129 . not sel di1 digital input di1. 0 = jogging inactive, 1 = jogging active. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for jogging 1 or 2 activation, i.e. control word 0302 fb cmd word 2 bits 20 and 21. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . 6 not sel not selected 0 di1(inv) inverted digital input di1. 1 = jogging inactive, 0 = jogging active. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 161 11 reference select panel reference type, external control location selection and external reference sources and limits 1101 keypad ref sel selects the type of the reference in local control mode. ref1 ref1(hz/rpm) speed reference in rpm. frequency reference (hz) if parameter 9904 motor ctrl mode setting is scalar:freq. 1 ref2(%) %-reference 2 1102 ext1/ext2 sel defines the source from which the drive reads the signal that selects between the two external control locations, ext1 or ext2. ext1 ext1 ext1 active. the control signal sources are defined by parameters 1001 ext1 commands and 1103 ref1 select. 0 di1 digital input di1. 0 = ext1, 1 = ext2. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 ext2 ext2 active. the control signal sources are defined by parameters 1002 ext2 commands and 1106 ref2 select. 7 comm fieldbus interface as the source for ext1/ext2 selection, i.e. control word 0301 fb cmd word 1 bit 5 (with abb drives profile 5319 efb par 19 bit 11). the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see sections dcu communication profile on page 262 and abb drives communication profile on page 258 . 8 timed func 1 timed ext1/ext2 control selection. timed function 1 active = ext2, timed function 1 inactive = ext1. see parameter group 36 timed functions . 9 timed func 2 see selection timed func 1. 10 timed func 3 see selection timed func 1. 11 timed func 4 see selection timed func 1. 12 di1(inv) inverted digital input di1. 1 = ext1, 0 = ext2. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 1103 ref1 select selects the signal source for external reference ref1. see section block diagram: reference source for ext1 on page 99 . ai1 keypad control panel 0 ai1 analog input ai1 1 ai2 analog input ai2 2 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 162 ai1/joyst analog input ai1 as joystick. the minimum input signal runs the motor at the maximum reference in the reverse direction, the maximum input at the maximum reference in the forward direction. minimum and maximum references are defined by parameters 1104 ref1 min and 1105 ref1 max. note: parameter 1003 direction must be set to request. warning! if parameter 1301 minimum ai1 is set to 0 v and analog input signal is lost (i.e. 0 v), the rotation of the motor is reversed to the maximum reference. set the following parameters to activate a fault when analog input signal is lost: set parameter 1301 minimum ai1 to 20% (2 v or 4 ma). set parameter 3021 ai1 fault limit to 5% or higher. set parameter 3001 ai actual signals and parameters 163 ai1*ai2 reference is calculated with the following equation: ref = ai(%) (ai2(%) / 50%) 15 ai1-ai2 reference is calculated with the following equation: ref = ai1(%) + 50% - ai2(%) 16 ai1/ai2 reference is calculated with the following equation: ref = ai1(%) (50% / ai2 (%)) 17 di4u,5d see selection di3u,4d. 30 di4u,5d(nc) see selection di3u,4d(nc). 31 freq input frequency input 32 seq prog sequence programming output. see parameter 8420 st1 ref sel. 33 ai1+seq prog addition of analog input ai1 and sequence programming output 34 ai2+seq prog addition of analog input ai2 and sequence programming output 35 1104 ref1 min defines the minimum value for external reference ref1. corresponds to the minimum setting of the used source signal. 0 0.0?500.0 hz / 0?30000 rpm minimum value in rpm. hz if parameter 9904 motor ctrl mode setting is scalar:freq. example: analog input ai1 is selected as the reference source (value of parameter 1103 is ai1). the reference minimum and maximum correspond to the 1301 minimum ai1 and 1302 maximum ai1 settings as follows: 1 = 0.1 hz / 1rpm 1105 ref1 max defines the maximum value for external reference ref1. corresponds to the maximum setting of the used source signal. eur: 50 / us: 60 0.0?500.0 hz / 0?30000 rpm maximum value in rpm. hz if parameter 9904 motor ctrl mode setting is scalar:freq. see example in parameter 1104 ref1 min. 1 = 0.1 hz / 1rpm 1106 ref2 select selects the signal source for external reference ref2. ai2 keypad see parameter 1103 ref1 select. 0 ai1 see parameter 1103 ref1 select. 1 ai2 see parameter 1103 ref1 select. 2 ai1/joyst see parameter 1103 ref1 select. 3 ai2/joyst see parameter 1103 ref1 select. 4 di3u,4d(r) see parameter 1103 ref1 select. 5 di3u,4d see parameter 1103 ref1 select. 6 parameters ? complete descriptions index name/selection description def, fbeq ref1 max ref1 min -ref1 min ai1 signal (%) -ref1 max (1105) (1104) (-1104) (-1105) 1301 1302 1301 1302 ref (hz/rpm)
actual signals and parameters 164 comm see parameter 1103 ref1 select. 8 comm+ai1 see parameter 1103 ref1 select. 9 comm*ai1 see parameter 1103 ref1 select. 10 di3u,4d(rnc) see parameter 1103 ref1 select. 11 di3u,4d(nc) see parameter 1103 ref1 select. 12 ai1+ai2 see parameter 1103 ref1 select. 14 ai1*ai2 see parameter 1103 ref1 select. 15 ai1-ai2 see parameter 1103 ref1 select. 16 ai1/ai2 see parameter 1103 ref1 select. 17 pid1out pid controller 1 output. see parameter groups 40 process pid set 1 and 41 process pid set 2 . 19 di4u,5d see parameter 1103 ref1 select. 30 di4u,5d(nc) see parameter 1103 ref1 select. 31 freq input see parameter 1103 ref1 select. 32 seq prog see parameter 1103 ref1 select. 33 ai1+seq prog see parameter 1103 ref1 select. 34 ai2+seq prog see parameter 1103 ref1 select. 35 1107 ref2 min defines the minimum value for external reference ref2. corresponds to the minimum setting of the used source signal. 0 0.0?100.0% value in percent of the maximum frequency / maximum speed / nominal torque. see example in parameter 1104 ref1 min for correspondence to the source signal limits. 1 = 0.1% 1108 ref2 max defines the maximum value for external reference ref2. corresponds to the maximum setting of the used source signal. 100 0.0?100.0% value in percent of the maximum frequency / maximum speed / nominal torque. see example in parameter 1104 ref1 min for correspondence to the source signal limits. 1 = 0.1% 12 constant speeds constant speed selection and values. see section constant speeds on page 111 . 1201 const speed sel activates the constant speeds or selects the activation signal. di3,4 not sel no constant speed in use 0 di1 speed defined by parameter 1202 const speed 1 is activated through digital input di1. 1 = active, 0 = inactive. 1 di2 speed defined by parameter 1202 const speed 1 is activated through digital input di2. 1 = active, 0 = inactive. 2 di3 speed defined by parameter 1202 const speed 1 is activated through digital input di3. 1 = active, 0 = inactive. 3 di4 speed defined by parameter 1202 const speed 1 is activated through digital input di4. 1 = active, 0 = inactive. 4 di5 speed defined by parameter 1202 const speed 1 is activated through digital input di5. 1 = active, 0 = inactive. 5 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 165 di1,2 constant speed selection through digital inputs di1 and di2.1 = di active, 0 = di inactive. 7 di2,3 see selection di1,2. 8 di3,4 see selection di1,2. 9 di4,5 see selection di1,2. 10 di1,2,3 constant speed selection through digital inputs di1, di2 and di3. 1 = di active, 0 = di inactive. 12 di3,4,5 see selection di1,2,3. 13 timed func 1 speed defined by parameter 1202 const speed 1 is activated by timed function. timed function 1 active = const speed 1. see parameter group 36 timed functions . 15 timed func 2 see selection timed func 1. 16 timed func 3 see selection timed func 1. 17 timed func 4 see selection timed func 1. 18 timed fun1&2 speed selection with timed func 1 and timed func 2. see parameter 1209 timed mode sel. 19 di1(inv) speed defined by parameter 1202 const speed 1 is activated through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) speed defined by parameter 1202 const speed 1 is activated through inverted digital input di2. 0 = active, 1 = inactive. -2 di3(inv) speed defined by parameter 1202 const speed 1 is activated through inverted digital input di3. 0 = active, 1 = inactive. -3 di4(inv) speed defined by parameter 1202 const speed 1 is activated through inverted digital input di4. 0 = active, 1 = inactive. -4 di5(inv) speed defined by parameter 1202 const speed 1 is activated through inverted digital input di5. 0 = active, 1 = inactive. -5 di1,2(inv) constant speed selection through inverted digital inputs di1 and di2. 1 = di active, 0 = di inactive. -7 parameters ? complete descriptions index name/selection description def, fbeq di1 di2 operation 0 0 no constant speed 1 0 speed defined by parameter 1202 const speed 1 0 1 speed defined by parameter 1203 const speed 2 1 1 speed defined by parameter 1204 const speed 3 di1 di2 di3 operation 0 0 0 no constant speed 1 0 0 speed defined by parameter 1202 const speed 1 0 1 0 speed defined by parameter 1203 const speed 2 1 1 0 speed defined by parameter 1204 const speed 3 0 0 1 speed defined by parameter 1205 const speed 4 1 0 1 speed defined by parameter 1206 const speed 5 0 1 1 speed defined by parameter 1207 const speed 6 1 1 1 speed defined by parameter 1208 const speed 7 di1 di2 operation 1 1 no constant speed 0 1 speed defined by parameter 1202 const speed 1 1 0 speed defined by parameter 1203 const speed 2 0 0 speed defined by parameter 1204 const speed 3
actual signals and parameters 166 di2,3(inv) see selection di1,2(inv). -8 di3,4(inv) see selection di1,2(inv). -9 di4,5(inv) see selection di1,2(inv). -10 di1,2,3(inv) constant speed selection through inverted digital inputs di1, di2 and di3. 1 = di active, 0 = di inactive. -12 di3,4,5(inv) see selection di1,2,3(inv). -13 1202 const speed 1 defines constant speed (or drive output frequency) 1. eur: 5 / us: 6 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. 1 = 0.1 hz / 1rpm 1203 const speed 2 defines constant speed (or drive output frequency) 2. eur: 10 / us: 12 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. 1 = 0.1 hz / 1rpm 1204 const speed 3 defines constant speed (or drive output frequency) 3. eur: 15 / us: 18 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. 1 = 0.1 hz / 1rpm 1205 const speed 4 defines constant speed (or drive output frequency) 4. eur: 20 / us: 24 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. 1 = 0.1 hz / 1rpm 1206 const speed 5 defines constant speed (or drive output frequency) 5. eur: 25 / us: 30 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. 1 = 0.1 hz / 1rpm 1207 const speed 6 defines constant speed (or drive output frequency) 6. eur: 40 / us: 48 0.0?500.0 hz / 0?30000 rpm speed in rpm. output frequency in hz if parameter 9904 motor ctrl mode setting is scalar:freq. constant speed 6 is used also as jogging speed. see section jogging on page 129 . 1 = 0.1 hz / 1rpm 1208 const speed 7 defines constant speed (or drive output frequency) 7. constant speed 7 is used also as jogging speed (see section jogging on page 129 ) or with fault functions ( 3001 ai actual signals and parameters 167 1209 timed mode sel selects timed function activated speed into use when parameter 1201 const speed sel selection is timed fun1&2. cs1/2/3/4 ext/cs1/2/3 external speed reference or constant speed selection with timed func 1 and timed func 2. 1 = timed function active, 0 = timed function inactive. 1 cs1/2/3/4 constant speed selection with timed func 1 and timed func 2. 1 = timed function active, 0 = timed function inactive. 2 13 analogue inputs analog input signal processing 1301 minimum ai1 defines the minimum %-value that corresponds to minimum ma/(v) signal for analog input ai1. when used as a reference, the value corresponds to the reference minimum setting. 0...20 ma 0...100% 4...20 ma 20...100% -10...10 ma -50...50% example: if ai1 is selected as the source for external reference ref1, this value corresponds to the value of parameter 1104 ref1 min. note: minimum ai value must not exceed maximum ai value. 1% -100.0?100.0% value in percent of the full signal range. example: if the minimum value for analog input is 4 ma, the percent value for 0?20 ma range is: (4 ma / 20 ma) 100% = 20% 1 = 0.1% 1302 maximum ai1 defines the maximum %-value that corresponds to maximum ma/(v) signal for analog input ai1. when used as a reference, the value corresponds to the reference maximum setting. 0...20 ma 0...100% 4...20 ma 20...100% -10...10 ma -50...50% example: if ai1 is selected as the source for external reference ref1, this value corresponds to the value of parameter 1105 ref1 max. 100 -100.0?100.0% value in percent of the full signal range. example: if the maximum value for analog input is 10 ma, the percent value for 0?20 ma range is: (10 ma / 20 ma) 100% = 50% 1 = 0.1% parameters ? complete descriptions index name/selection description def, fbeq timed func 1 timed func 2 operation 0 0 external reference 1 0 speed defined by parameter 1202 const speed 1 0 1 speed defined by parameter 1203 const speed 2 1 1 speed defined by parameter 1204 const speed 3 timed func 1 timed func 2 operation 0 0 speed defined by parameter 1202 const speed 1 1 0 speed defined by parameter 1203 const speed 2 0 1 speed defined by parameter 1204 const speed 3 1 1 speed defined by parameter 1205 const speed 4 = = = = = =
actual signals and parameters 168 1303 filter ai1 defines the filter time constant for analog input ai1, i.e the time within 63% of a step change is reached. 0.1 0.0?10.0 s filter time constant 1 = 0.1 s 1304 minimum ai2 defines the minimum %-value that corresponds to minimum ma/(v) signal for analog input ai2. see parameter 1301 minimum ai1. 1% -100.0?100.0% see parameter 1301 minimum ai1. 1 = 0.1% 1305 maximum ai2 defines the maximum %-value that corresponds to maximum ma/(v) signal for analog input ai2. see parameter 1302 maximum ai1. 100 -100.0?100.0% see parameter 1302 maximum ai1. 1 = 0.1% 1306 filter ai2 defines the filter time constant for analog input ai2. see parameter 1303 filter ai1. 0.1 0.0?10.0 s filter time constant 1 = 0.1 s 14 relay outputs status information indicated through relay output, and relay operating delays 1401 relay output 1 selects a drive status indicated through relay output ro. the relay energises when the status meets the setting. fault(-1) not sel not used 0 ready ready to function: run enable signal on, no fault, supply voltage within acceptable range and emergency stop signal off. 1 run running: start signal on, run enable signal on, no active fault. 2 fault(-1) inverted fault. relay is de-energised on a fault trip. 3 fault fault 4 alarm alarm 5 reversed motor rotates in reverse direction. 6 started the drive has received start command. relay is energized even if run enable signal is off. relay is de-energized when drive receives a stop command or a fault occurs. 7 suprv1 over status according to supervision parameters 3201 ... 3203 . see parameter group 32 supervision . 8 suprv1 under see selection suprv1 over. 9 suprv2 over status according to supervision parameters 3204 ... 3206 . see parameter group 32 supervision . 10 suprv2 under see selection suprv2 over. 11 suprv3 over status according to supervision parameters 3207 ... 3209 . see parameter group 32 supervision . 12 suprv3 under see selection suprv3 over. 13 at set point output frequency is equal to the reference frequency. 14 parameters ? complete descriptions index name/selection description def, fbeq 100 63 % t unfiltered signal filtered signal time constant
actual signals and parameters 169 fault(rst) fault. automatic reset after the autoreset delay. see parameter group 31 automatic reset . 15 flt/alarm fault or alarm 16 ext ctrl drive is under external control. 17 ref 2 sel external reference ref 2 is in use. 18 const freq a constant speed is in use. see parameter group 12 constant speeds .19 ref loss reference or active control location is lost. 20 overcurrent alarm/fault by overcurrent protection function 21 overvoltage alarm/fault by overvoltage protection function 22 drive temp alarm/fault by drive overtemperature protection function 23 undervoltage alarm/fault by undervoltage protection function 24 ai1 loss analog input ai1 signal is lost. 25 ai2 loss analog input ai2 signal is lost. 26 motor temp alarm/fault by motor overtemperature protection function. see parameter 3005 mot therm prot. 27 stall alarm/fault by stall protection function. see parameter 3010 stall function. 28 underload alarm/fault by underload protection function. see parameter 3013 underload func 29 pid sleep pid sleep function. see parameter group 40 process pid set 1 / 41 process pid set 2 . 30 flux ready motor is magnetized and able to supply nominal torque. 33 user macro 2 user macro 2 is active. 34 comm fieldbus control signal 0134 comm ro word. 0 = de-energize output, 1 = energize output. 35 comm(-1) fieldbus control signal 0134 comm ro word. 0 = de-energize output, 1 = energize output 36 timed func 1 timed function 1 is active. see parameter group 36 timed functions .37 timed func 2 timed function 2 is active. see parameter group 36 timed functions .38 timed func 3 timed function 3 is active. see parameter group 36 timed functions .39 timed func 4 timed function 4 is active. see parameter group 36 timed functions .40 m.trig fan cooling fan running time counter is triggered. see parameter group 29 maintenance trig . 41 m.trig rev revolutions counter is triggered. see parameter group 29 maintenance trig . 42 parameters ? complete descriptions index name/selection description def, fbeq 0134 value binary do ro 0 000000 0 0 1 000001 0 1 2 000010 1 0 3 000011 1 1 0134 value binary do ro 0 000000 1 1 1 000001 1 0 2 000010 0 1 3 000011 0 0
actual signals and parameters 170 m.trig run run time counter is triggered. see parameter group 29 maintenance trig . 43 m.trig mwh mwh counter is triggered. see parameter group 29 maintenance trig .44 seq prog relay output control with sequence programming. see parameter 8423 st1 out control. 50 mbrk on/off control of a mechanical brake. see parameter group 43 mech brk control . 51 jog active jogging function active. see parameter 1010 jogging sel. 52 1404 ro 1 on delay defines the operation delay for relay output ro. 0 0.0?3600.0 s delay time. the figure below illustrates the operation (on) and release (off) delays for relay output ro. 1 = 0.1 s 1405 ro 1 off delay defines the release delay for relay output ro. 0 0.0?3600.0 s delay time. see figure in parameter 1404 ro 1 on delay. 1 = 0.1 s 15 analogue outputs selection of the actual signals to be indicated through analog output and output signal processing 1501 ao1 content sel connects a drive signal to analog output ao. 103 x?x parameter index in group 01 operating data . e.g. 102 = 0102 speed. 1502 ao1 content min defines the minimum value for signal selected with parameter 1501 ao1 content sel. ao minimum and maximum correspond the 1504 minimum ao1 and 1505 maximum ao1 settings as follows: - x...x setting range depends on parameter 1501 ao1 content sel setting. - 1503 ao1 content max defines the maximum value for signal selected with parameter 1501 ao1 content sel. see figure in parameter 1502 ao1 content min. - x...x setting range depends on parameter 1501 ao1 content sel setting. - 1504 minimum ao1 defines the minimum value for the analog output signal ao. see figure in parameter 1502 ao1 content min. 0 0.0?20.0 ma minimum value 1 = 0.1 ma 1505 maximum ao1 defines the maximum value for the analog output signal ao. see figure in parameter 1502 ao1 content min. 20 0.0?20.0 ma maximum value 1 = 0.1 ma parameters ? complete descriptions index name/selection description def, fbeq 1404 on delay 1405 off delay control event relay status ao (ma) ao content 1504 1502 1503 ao (ma) ao content 1505 1504 1503 1502 1505
actual signals and parameters 171 1506 filter ao1 defines the filter time constant for analog output ao, i.e the time within 63% of a step change is reached. see figure in parameter 1303 filter ai1. 0.1 0.0?10.0 s filter time constant 1 = 0.1 s 16 system controls run enable, parameter lock etc. 1601 run enable selects a source for the external run enable signal. not sel not sel allows the drive to start without an external run enable signal. 0 di1 external signal required through digital input di1. 1 = run enable. if run enable signal is switched off, the drive will not start or coasts to stop if it is running. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for inverted run enable signal (run disable), i.e. control word 0301 fb cmd word 1 bit 6 (with abb drives profile 5319 efb par 19 bit 3). the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see sections dcu communication profile on page 262 and abb drives communication profile on page 258 . 7 di1(inv) external signal required through inverted digital input di1. 0 = run enable. if run enable signal is switched on, the drive will not start or coasts to stop if it is running. -1 di2(inv) see selection di1(inv) -2 di3(inv) see selection di1(inv) -3 di4(inv) see selection di1(inv) -4 di5(inv) see selection di1(inv) -5 1602 parameter lock selects the state of the parameter lock. the lock prevents parameter changing from control panel. open locked parameter values cannot be changed from the control panel. the lock can be opened by entering the valid code to parameter 1603 pass code. the lock does not prevent parameter changes made by macros or fieldbus. 0 open the lock is open. parameter values can be changed. 1 not saved parameter changes made by control panel are not stored into the permanent memory. to store changed parameter values, set parameter 1607 param save value to save. 2 1603 pass code selects the pass code for the parameter lock (see parameter 1602 parameter lock). 0 0?65535 pass code. setting 358 opens the lock. the value reverts back to 0 automatically. 1 = 1 1604 fault reset sel selects the source for the fault reset signal. the signal resets the drive after a fault trip if the cause of the fault no longer exists. keypad keypad fault reset only from the control panel 0 di1 reset through digital input di1 (reset by a rising edge of di1) or by control panel 1 di2 see selection di1. 2 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 172 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 start/stop reset along with the stop signal received through a digital input, or by control panel. note: do not use this option when start, stop and direction commands are received through fieldbus communication. 7 comm fieldbus interface as the source for the fault reset signal, i.e. control word 0301 fb cmd word 1 bit 4 (with abb drives profile 5319 efb par 19 bit 7). the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see sections dcu communication profile on page 262 and abb drives communication profile on page 258 . 8 di1(inv) reset through inverted digital input di1 (reset by a falling edge of di1) or by control panel -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 1605 user par set chg enables the change of the user parameter set through a digital input. see parameter 9902 applic macro. the change is only allowed when the drive is stopped. during the change, the drive will not start. note: always save the user parameter set by parameter 9902 after changing any parameter setting, or reperforming the motor identification. the last settings saved by the user are loaded into use whenever the power is switched off and on again or the parameter 9902 setting is changed. any unsaved changes will be lost. note: the value of this parameter is not included in the user parameter sets. a setting once made remains despite user parameter set change. note: selection of user parameter set 2 can be supervised via relay output ro. see parameter 1401 relay output 1. not sel not sel user parameter set change is not possible through a digital input. parameter sets can be changed only from control panel. 0 di1 user parameter set control through digital input di1. falling edge of digital input di1: user parameter set 1 is loaded into use. rising edge of digital input di1: user parameter set 2 is loaded into use. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 di1,2 user parameter set selection through digital inputs di1 and di2. 1 = di active, 0 = di inactive. 7 di2,3 see selection di1,2. 8 parameters ? complete descriptions index name/selection description def, fbeq di1 di2 user parameter set 0 0 user parameter set 1 1 0 user parameter set 2 0 1 user parameter set 3
actual signals and parameters 173 di3,4 see selection di1,2. 9 di4,5 see selection di1,2. 10 di1(inv) user parameter set control through inverted digital input di1. falling edge of inverted digital input di1: user parameter set 2 is loaded into use. rising edge of inverted digital input di1: user parameter set 1 is loaded into use. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 di1,2(inv) user parameter set selection through inverted digital inputs di1 and di2. 1 = di inactive, 0 =di active. -7 di2,3(inv) see selection di1,2(inv). -8 di3,4(inv) see selection di1,2(inv). -9 di4,5(inv) see selection di1,2(inv). -10 1606 local lock disables entering local control mode or selects the source for the local control mode lock signal. when local lock is active, entering the local control mode is disabled (loc/rem key of the panel). not sel not sel local control is allowed. 0 di1 local control mode lock signal through digital input di1. rising edge of digital input di1: local control disabled. falling edge of digital input di1: local control allowed. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 on local control is disabled. 7 comm fieldbus interface as the source for the local lock, i.e. control word 0301 fb cmd word 1 bit 14. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . note: this setting applies only for the dcu profile! 8 di1(inv) local lock through inverted digital input di1. rising edge of inverted digital input di1: local control allowed. falling edge of inverted digital input di1: local control disabled. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 parameters ? complete descriptions index name/selection description def, fbeq di1 di2 user parameter set 1 1 user parameter set 1 0 1 user parameter set 2 1 0 user parameter set 3
actual signals and parameters 174 1607 param save saves the valid parameter values to the permanent memory. note: a new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection. done done saving completed 0 save... saving in progress 1 1608 start enable 1 selects the source for the start enable 1 signal. note: functionality of the start enable signal is different from the run enable signal. example: external damper control application using start enable and run enable. motor can start only after the damper is fully open. not sel not sel start enable signal is on. 0 di1 external signal required through digital input di1. 1 = start enable. if start enable signal is switched off, the drive will not start or it coasts to stop if it is running and alarm start enable 1 missing is activated. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 parameters ? complete descriptions index name/selection description def, fbeq drive started start/stop command (group 10) (1608 and 1609) relay energized relay de-energized damper open damper time damper closing time started output status (group 14) damper status damper closed run enable signal from the damper end switch when the damper is fully opened. (1601) motor status acceleration time (2202) deceleration time (2203) start enable signals damper closed opening motor speed
actual signals and parameters 175 comm fieldbus interface as the source for the inverted start enable (start disable) signal, i.e. control word 0302 fb cmd word 2 bit 18 (bit 19 for start enable 2). the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . note: this setting applies only for the dcu profile! 7 di1(inv) external signal required through inverted digital input di1. 0 = start enable. if start enable signal is switched off, the drive will not start or it coasts to stop if it is running and alarm start enable 1 missing is activated. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 1609 start enable 2 selects the source for the start enable 2 signal. see parameter 1608 start enable 1. not sel see parameter 1608 . 1610 display alarms activates/deactivates alarms overcurrent (2001), overvoltage (2002), undervoltage (2003) and device overtemp (2009). for more information see chapter fault tracing . no no alarms are inactive. 0 yes alarms are active. 1 1611 parameter view selects the parameter view, i.e which parameters are shown. note: this parameter is visible only when it is activated by the optional flashdrop device. flashdrop is designed for fast copying of parameters to unpowered drives. it allows for easy customisation of the parameter list, e.g. selected parameters can be hidden. for more information, see mfdt-01 flashdrop user?s manual [3afe68591074 (english)]. flashdrop parameter values are activated by setting parameter 9902 applic macro to load fd set. default default complete long and short parameter lists 0 flashdrop flashdrop parameter list. does not include short parameter list. parameters which are hidden by the flashdrop device are not visible. 1 18 freq in & tran out frequency input and transistor output signal processing. 1801 freq input min defines the minimum input value when di5 is used as a frequency input. see section frequency input on page 105 . 0 0?10000 hz minimum frequency 1 = 1 hz 1802 freq input max defines the maximum input value when di5 is used as a frequency input. see section frequency input on page 105 . 1000 0?10000 hz maximum frequency 1 = 1 hz 1803 filter freq in defines the filter time constant for frequency input, i.e the time within 63% of a step change is reached. see section frequency input on page 105 . 0.1 0.0?10.0 s filter time constant 1 = 0.1 s 1804 to mode selects the operation mode for the transistor output to. see section transistor output on page 105 . digital digital transistor output is used as a digital output do. 0 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 176 frequency transistor output is used as a frequency output fo. 1 1805 do signal selects a drive status indicated through digital output do. fault(-1) see parameter 1401 relay output 1. 1806 do on delay defines the operation delay for digital output do. 0 0.0?3600.0 s delay time 1 = 0.1 s 1807 do off delay defines the release delay for digital output do. 0 0.0?3600.0 s delay time 1 = 0.1 s 1808 fo content sel selects a drive signal to be connected to frequency output fo. 104 x?x parameter index in group 01 operating data . e.g. 102 = 0102 speed. 1809 fo content min defines the minimum frequency output fo signal value. signal is selected with parameter 1808 fo content sel. fo minimum and maximum correspond to 1811 minimum fo and 1812 maximum fo settings as follows: - x...x setting range depends on parameter 1808 fo content sel setting. - 1810 fo content max defines the maximum frequency output fo signal value. signal is selected with parameter 1808 fo content sel. see parameter 1809 fo content min. - x...x setting range depends on parameter 1808 fo content sel setting. - 1811 minimum fo defines the minimum value for frequency output fo. 10 10?16000 hz minimum frequency. see parameter 1809 fo content min. 1 = 1 hz 1812 maximum fo defines the maximum value for frequency output fo. 1000 10?16000 hz maximum frequency. see parameter 1809 fo content min. 1 = 1 hz 1813 filter fo defines the filter time constant for frequency output fo, i.e the time within 63% of a step change is reached. 0.1 0.0?10.0 s filter time constant 1 = 0.1 s 19 timer & counter timer and counter for start and stop control 1901 timer delay defines the time delay for the timer. 10 0.01?120.00 s delay time 1 = 0.01 s 1902 timer start selects the source for the timer start signal. not sel di1(inv) timer start through inverted digital input di1. timer start by a falling edge of digital input di1. note: timer start is not possible when reset is active (parameter 1903 timer reset). -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 parameters ? complete descriptions index name/selection description def, fbeq fo fo content 1811 1809 1810 fo fo content 1812 1811 1809 1810 1812
actual signals and parameters 177 di5(inv) see selection di1(inv). -5 not sel no start signal 0 di1 timer start through digital input di1. timer start by rising edge of digital input di1. note: timer start is not possible when reset is active (parameter 1903 timer reset). 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 start external start signal, e.g. start signal through fieldbus 6 1903 timer reset selects the source for the timer reset signal. not sel di1(inv) timer reset through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no reset signal 0 di1 timer reset through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 start timer reset at start. start signal source is selected by parameter 1902 timer start. 6 start (inv) time reset at start (inverted), i.e. timer is reset when start signal is deactivated. start signal source is selected by parameter 1902 timer start. 7 reset external reset, e.g. reset through fieldbus 8 1904 counter enable selects the source for the counter enable signal. disabled di1(inv) counter enable signal through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 disabled no counter enable 0 di1 counter enable signal through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 178 enabled counter enabled 6 1905 counter limit defines the counter limit. 1000 0?65535 limit value 1 = 1 1906 counter input selects the input signal source for the counter. pls in(di5) pls in(di 5) digital input di5 pulses. when a pulse is detected, the counter value increases by 1. 1 enc w/o dir encoder pulse edges. when a rising or a falling edge is detected, the counter value increases by 1. 2 enc with dir encoder pulse edges. the direction of rotation is taken into account. when a rising or a falling edge is detected and the direction of rotation is forward, the counter value increases by 1. when the direction of rotation is reverse, the counter value decreases by 1. 3 filtered di5 filtered digital input di5 pulses. when a pulse is detected, the counter value increases by 1. note: due to filtering, the maximum input signal frequency is 50 hz. 4 1907 counter reset selects the source for the counter reset signal. not sel di1(inv) counter reset through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no reset signal 0 di1 counter reset through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 at limit reset at the limit defined by parameter 1905 counter limit 6 strt/stp cmd counter reset at start/stop command. source for the start/stop is selected by parameter 1911 cntr s/s command. 7 s/s cmd(inv) counter reset at start/stop command (inverted), i.e. counter is reset when start/stop command is deactivated. start signal source is selected by parameter 1902 timer start. 8 reset reset enabled 9 1908 counter res val defines the value for the counter after reset. 0 0?65535 counter value 1 = 1 1909 count divider defines the divider for the pulse counter. 0 0?12 pulse counter divider n. every 2 n bit is counted. 1 = 1 1910 count direction defines the source for the counter direction selection. up di1(inv) counter direction selection through inverted digital input di1. 1 = counts up, 0 = counts down. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 179 di5(inv) see selection di1(inv). -5 up counts up 0 di1 counter direction selection through digital input di1. 0 = counts up, 1 = counts down. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 down counts down 6 1911 cntr s/s command selects the source for the drive start/stop command when parameter 1001 ext1 commands value is set to counter start / counter stop. not sel di1(inv) start/stop command through inverted digital input di1. when par. 1001 value is counter stop: 0 = start. stop when counter limit defined by parameter 1905 counter limit has been exceeded. when par. 1001 value is counter start: 0 = stop. start when counter limit defined by parameter 1905 has been exceeded. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel not start/stop command source 0 di1 start/stop command through digital input di1. when par. 1001 value is counter stop: 1 = start. stop when counter limit defined by parameter 1905 counter limit has been exceeded. when par. 1001 value is counter start: 1 = stop. start when counter limit defined by parameter 1905 has been exceeded. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 activate external start/stop command, e.g. through fieldbus 6 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 180 20 limits drive operation limits. speed values are used with vector control and frequency values are used with scalar control. the control mode is selected by parameter 9904 motor ctrl mode. 2001 minimum speed defines the allowed minimum speed. a positive (or zero) minimum speed value defines two ranges, one positive and one negative. a negative minimum speed value defines one speed range. 0 -30000?30000 rpm minimum speed 1 = 1 rpm 2002 maximum speed defines the allowed maximum speed. see parameter 2001 minimum speed. eur: 1500 / us: 1800 0?30000 rpm maximum speed 1 = 1 rpm 2003 max current defines the allowed maximum motor current. 1.8 i 2n 0.0?1.8 i 2n a current 1 = 0.1 a 2005 overvolt ctrl activates or deactivates the overvoltage control of the intermediate dc link. fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. to prevent the dc voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque. note: if a brake chopper and resistor are connected to the drive, the controller must be off (selection disable) to allow chopper operation. enable disable overvoltage control deactivated 0 enable overvoltage control activated 1 2006 undervolt ctrl activates or deactivates the undervoltage control of the intermediate dc link. if the dc voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. by decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the dc link charged and preventing an undervoltage trip until the motor coasts to stop. this will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan. see section power loss ride-through on page 107 . enable (time) disable undervoltage control deactivated 0 enable(time) undervoltage control activated. the undervoltage control is active for 500 ms. 1 enable undervoltage control activated. no operation time limit. 2 parameters ? complete descriptions index name/selection description def, fbeq 2001 2002 speed -(2001) -(2002) 2002 2001 allowed speed range allowed speed range allowed speed range t speed t 2001 value is > 0 00 2001 value is < 0
actual signals and parameters 181 2007 minimum freq defines the minimum limit for the drive output frequency. a positive (or zero) minimum frequency value defines two ranges, one positive and one negative. a negative minimum frequency value defines one speed range. note: minimum freq < maximum freq. 0 -500.0?500.0 hz minimum frequency 1 = 0.1 hz 2008 maximum freq defines the maximum limit for the drive output frequency. eur: 50 / us: 60 0.0?500.0 hz maximum frequency 1 = 0.1 hz 2013 min torque sel selects the minimum torque limit for the drive. min torque 1 min torque 1 value defined by parameter 2015 min torque 1 0 di1 digital input di1. 0 = parameter 2015 min torque 1 value. 1 = parameter 2016 min torque 2 value. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for the torque limit 1/2 selection, i.e. control word 0301 fb cmd word 1 bit 15. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . minimum torque limit 1 is defined by parameter 2015 min torque 1 and minimum torque limit 2 is defined by parameter 2016 min torque 2. note: this setting applies only for the dcu profile! 7 di1(inv) inverted digital input di1. 1 = value of parameter 2015 min torque 1. 0 = value of parameter 2016 min torque 2. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 2014 max torque sel selects the maximum torque limit for the drive. max torque 1 max torque 1 value of parameter 2017 max torque 1 di1 digital input di1. 0 = parameter 2017 max torque 1 value. 1 = parameter 2018 max torque 2 value. 1 parameters ? complete descriptions index name/selection description def, fbeq 2007 2008 f -(2007) -(2008) 2008 2007 allowed frequency range allowed frequency range allowed frequency range t f t 2007 value is > 0 0 0 2007 value is < 0
actual signals and parameters 182 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for the torque limit 1/2 selection, i.e. control word 0301 fb cmd word 1 bit 15. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . maximum torque limit 1 is defined by parameter 2017 max torque 1 and maximum torque limit 2 is defined by parameter 2018 max torque 2. note: this setting applies only for the dcu profile! 7 di1(inv) inverted digital input di1. 1 = parameter 2017 max torque 1 value. 0=parameter 2018 max torque 2 value. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 2015 min torque 1 defines minimum torque limit 1 for the drive. see parameter 2013 min torque sel. -300 -600.0?0.0% value in percent of the motor nominal torque 1 = 0.1% 2016 min torque 2 defines minimum torque limit 2 for the drive. see parameter 2013 min torque sel. -300 -600.0?0.0% value in percent of the motor nominal torque 1 = 0.1% 2017 max torque 1 defines maximum torque limit 1 for the drive. see parameter 2014 max torque sel. 300 0.0?600.0% value in percent of the motor nominal torque 1 = 0.1% 2018 max torque 2 defines maximum torque limit 2 for the drive. see parameter 2014 max torque sel. 300 0.0?600.0% value in percent of the motor nominal torque 1 = 0.1% 2019 brake chopper old parameter. left out in sw version 2.51b and later. see parameter 2202 . 2020 brake chopper selects the brake chopper control. (only in sw version 2.51b or later). inbuilt inbuilt internal brake chopper control. note: ensure the brake resistor(s) is installed and the overvoltage control is switched off by setting parameter 2005 overvolt ctrl to selection disable. 0 external external brake chopper control. note: the drive is compatible only with abb acs-brk-x brake units. note: ensure the brake unit is installed and the overvoltage control is switched off by setting parameter 2005 overvolt ctrl to selection disable. 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 183 21 start/stop start and stop modes of the motor 2101 start function selects the motor starting method. auto auto the drive starts the motor instantly from zero frequency if parameter 9904 motor ctrl mode setting is scalar:freq. if flying start is required use selection scan start. if parameter 9904 motor ctrl mode value is vector:speed/ vector:torq, the drive pre-magnetises the motor with dc current before the start. the pre-magnetising time is defined by parameter 2103 dc magn time. see selection dc magn. 1 dc magn the drive pre-magnetises the motor with dc current before the start. the pre-magnetising time is defined by parameter 2103 dc magn time. if parameter 9904 motor ctrl mode value is vector:speed/ vector:torq, dc magnetising guarantees the highest possible break-away torque when the pre-magnetising is set long enough. note: starting to a rotating machine is not possible when dc magn is selected. warning! the drive will start after the set pre-m agnetising time has passed even if the motor magnetisation is not completed. ensure always in applications where a full break-away torque is essential, that the constant magnetising time is long enough to allow generation of full magnetisation and torque. 2 torq boost torque boost should be selected if a high break-away torque is required. used only when parameter 9904 motor ctrl mode setting is scalar:freq. the drive pre-magnetises the motor with dc current before the start. the pre-magnetising time is defined by parameter 2103 dc magn time. torque boost is applied at start. torque boost is stopped when output frequency exceeds 20 hz or when it is equal to the reference value. see parameter 2110 torq boost curr. note: starting to a rotating machine is not possible when torq boost is selected. warning! the drive will start after the set pre-m agnetising time has passed although the motor magnetisation is not completed. ensure always in applications where a full break-away torque is essential, that the constant magnetising time is long enough to allow generation of full magnetisation and torque. 4 scan start frequency scanning flying start (starting to a rotating machine). based on frequency scanning (interval 2008 maximum freq... 2007 minimum freq) to identify the frequency. if frequency identification fails, dc magnetisation is used (see selection dc magn). 6 scan + boost combines scanning start (starting to a rotating machine) and torque boost. see selections scanstart and torq boost. if frequency identification fails, torque boost is used. used only when parameter 9904 motor ctrl mode setting is scalar:freq. 7 2102 stop function selects the motor stop function. coast coast stop by cutting off the motor power supply. the motor coasts to a stop. 1 ramp stop along a ramp. see parameter group 22 accel/decel .2 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 184 speed comp speed compensation is used for constant distance braking. speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. see section speed compensated stop on page 108 . 3 spd comp fwd speed compensation is used for constant distance braking if the direction of rotation is forward. speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. see section speed compensated stop on page 108 . if the direction of rotation is reverse, the drive is stopped along a ramp. 4 spd comp rev speed compensation is used for constant distance braking if the direction of rotation is reverse. speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. see section speed compensated stop on page 108 . if the direction of rotation is forward, the drive is stopped along a ramp. 5 2103 dc magn time defines the pre-magnetising time. see parameter 2101 start function. after the start command, the drive automatically pre-magnetises the motor the set time. 0.3 0.00?10.00 s magnetising time. set this value long enough to allow full motor magnetization. too long time heats the motor excessively. 1 = 0.01 s 2104 dc hold ctl activates the dc hold or dc braking function. not sel not sel inactive 0 dc hold dc hold function active. dc hold is not possible if parameter 9904 motor ctrl mode setting is scalar:freq. when both the reference and the motor speed drop below the value of parameter 2105 dc hold speed, the drive will stop generating sinusoidal current and start to inject dc into the motor. the current is set by parameter 2106 dc curr ref. when the reference speed exceeds parameter 2105 value, normal drive operation continues. note: dc hold has no effect if the start signal is switched off. note: injecting dc current into the motor causes the motor to heat up. in applications where long dc hold times are required, externally ventilated motors should be used. if the dc hold period is long, the dc hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor. 1 dc braking dc current braking function active. if parameter 2102 stop function is set to coast, dc braking is applied after the start command is removed. if parameter 2102 stop function is set to ramp, dc braking is applied after the ramp. 2 2105 dc hold speed defines the dc hold speed. see parameter 2104 dc hold ctl. 5 0?360 rpm speed 1 = 1 rpm parameters ? complete descriptions index name/selection description def, fbeq t t ref dc hold dc hold speed motor speed
actual signals and parameters 185 2106 dc curr ref defines the dc hold current. see parameter 2104 dc hold ctl. 30 0?100% value in percent of the motor nominal current (parameter 9906 motor nom curr) 1 = 1% 2107 dc brake time defines the dc brake time. 0 0.0?250.0 s time 1 = 0.1 s 2108 start inhibit enables the start inhibit function. drive start is inhibited if, - fault is reset. - run enable signal activates while the start command is active. see parameter 1601 run enable. - control mode changes from local to remote. - external control mode switches from ext1 to ext2 or from ext2 to ext1. off off disabled 0 on enabled 1 2109 emerg stop sel selects the source for the external emergency stop command. the drive cannot be restarted before the emergency stop command is reset. note: the installation must include emergency stop devices and any other safety equipment that may be needed. pressing stop on the drive?s control panel does not: - generate an emergency stop of the motor - separate the drive from dangerous potential. not sel not sel emergency stop function is not selected 0 di1 digital input di1. 1 = stop along the emergency stop ramp. see parameter 2208 emer dec time. 0 = emergency stop command reset. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 di1(inv) inverted digital input di. 0 = stop along the emergency stop ramp. see parameter 2208 emer dec time. 1 = emergency stop command reset -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 2110 torq boost curr defines the maximum supplied current during torque boost. see parameter 2101 start function. 100 15?300% value in percent 1 = 1% 2111 stop signal dly defines the stop signal delay time when parameter 2102 stop function is set to speed comp. 0 0?10000 ms delay time 1 = 1 ms parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 186 2112 zero speed delay defines the delay for the zero speed delay function. the function is useful in applications where a smooth and quick restarting is essential. during the delay the drive knows accurately the rotor position. zero speed delay can be used e.g. with jogging function or mechanical brake. no zero speed delay the drive receives a stop command and decelerates along a ramp. when the motor actual speed falls below an internal limit (called zero speed), the speed controller is switched off. the inverter modulation is stopped and the motor coasts to standstill. with zero speed delay the drive receives a stop command and decelerates along a ramp. when the actual motor speed falls below an internal limit (called zero speed), the zero speed delay function activates. during the delay the functions keeps the speed controller live: the inverter modulates, motor is magnetised and the drive is ready for a quick restart. 0 0.0?60.0 s delay time. if parameter value is set to zero, zero speed delay function is disabled. 1 = 0.1 s 22 accel/decel acceleration and deceleration times 2201 acc/dec 1/2 sel defines the source from which the drive reads the signal that selects between the two ramp pairs, acceleration/deceleration pair 1 and 2. ramp pair 1 is defined by parameters 2202 ? 2204 . ramp pair 2 is defined by parameters 2205 ? 2207 . di5 not sel ramp pair 1 is used. 0 di1 digital input di1. 1 = ramp pair 2, 0 = ramp pair 1. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for ramp pair 1/2 selection, i.e. control word 0301 fb cmd word 1 bit 10. the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see section dcu communication profile on page 262 . note: this setting applies only for the dcu profile! 7 seq prog sequence programming ramp defined by parameter 8422 st1 ramp (or 8432 / ... / 8492 ) 10 di1(inv) inverted digital input di1. 0 = ramp pair 2, 1 = ramp pair 1. -1 di2(inv) see selection di1(inv). -2 parameters ? complete descriptions index name/selection description def, fbeq speed t zero speed speed t zero speed delay no zero speed delay with zero speed delay speed controller switched o ff: motor coasts to stop. speed controller remains live. motor is decelerated to true 0 speed.
actual signals and parameters 187 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 2202 acceler time 1 defines the acceleration time 1 i.e. the time required for the speed to change from zero to the speed defined by parameter 2008 maximum freq (with scalar control) / 2002 maximum speed (with vector control). the control mode is selected by parameter 9904 motor ctrl mode. - if the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate. - if the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference signal. - if the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive operating limits. actual acceleration time depends on parameter 2204 ramp shape 1 setting. 5 0.0?1800.0 s time 1 = 0.1 s 2203 deceler time 1 defines the deceleration time 1 i.e. the time required for the speed to change from the value defined by parameter 2008 maximum freq (with scalar control) / 2002 maximum speed (with vector control) to zero. the control mode is selected by parameter 9904 motor ctrl mode. - if the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference signal. - if the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate. - if the deceleration time is set too short, the drive will automatically prolong the deceleration in order not to exceed drive operating limits. if a short deceleration time is needed for a high inertia application, the drive should be equipped with a brake resistor. actual deceleration time depends on parameter 2204 ramp shape 1 setting. 5 0.0?1800.0 s time 1 = 0.1 s parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 188 2204 ramp shape 1 selects the shape of the acceleration/deceleration ramp 1. the function is deactivated during emergency stop and jogging. 0 0.0?1000.0 s 0.00 s: linear ramp. suitable for steady acceleration or deceleration and for slow ramps. 0.01 ? 1000.00 s: s-curve ramp. s-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. the s-curve consists of symmetrical curves at both ends of the ramp and a linear part in between. 1 = 0.1 s 2205 acceler time 2 defines the acceleration time 2 i.e. the time required for the speed to change from zero to the speed defined by parameter 2008 maximum freq (with scalar control) / 2002 maximum speed (with vector control). the control mode is selected by parameter 9904 motor ctrl mode. see parameter 2202 acceler time 1. acceleration time 2 is used also as jogging acceleration time. see parameter 1010 jogging sel. 60 0.0?1800.0 s time 1 = 0.1 s 2206 deceler time 2 defines the deceleration time 2 i.e. the time required for the speed to change from the value defined by parameter 2008 maximum freq (with scalar control) / 2002 maximum speed (with vector control) to zero. the control mode is selected by parameter 9904 motor ctrl mode. see parameter 2203 deceler time 1. deceleration time 2 is used also as jogging deceleration time. see parameter 1010 jogging sel. 60 0.0?1800.0 s time 1 = 0.1 s 2207 ramp shape 2 selects the shape of the acceleration/deceleration ramp 2. the function is deactivated during emergency stop. during jogging, parameter value is set to zero (i.e. linear ramp). see 1010 jogging sel. 0 0.0?1000.0 s see parameter 2204 ramp shape 1. 1 = 0.1 s 2208 emer dec time defines the time within the drive is stopped if an emergency stop is activated. see parameter 2109 emer stop sel. 1 0.0?1800.0 s time 1 = 0.1 s 2209 ramp input 0 defines the source for forcing the ramp input to zero. not sel not sel not selected 0 di1 digital input di1.1 = ramp input is forced to zero. ramp output will ramp to zero according to the used ramp time. 1 parameters ? complete descriptions index name/selection description def, fbeq linear ramp: par. 2204 = 0 s s-curve ramp: par. 2204 > 0 s a rule of thumb a suitable relation between the ramp shape time and the acceleration ramp time is 1/5. speed t max par. 2202 par. 2204
actual signals and parameters 189 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 comm fieldbus interface as the source for forcing ramp input to zero, i.e. control word 0301 fb cmd word 1 bit 13 (with abb drives profile 5319 efb par 19 bit 6). the control word is sent by the fieldbus controller via the fieldbus adapter or embedded fieldbus (modbus) to the drive. for the control word bits, see sections dcu communication profile on page 262 and abb drives communication profile on page 258 . 7 di1(inv) inverted digital input di1.0 = ramp input is forced to zero. ramp output will ramp to zero according to the used ramp time. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 23 speed control speed controller variables. see section speed controller tuning on page 115 . 2301 prop gain defines a relative gain for the speed controller. great gain may cause speed oscillation. the figure below shows the speed controller output after an error step when the error remains constant. note: for automatic setting of the gain, use autotune run (parameter 2305 autotune run). 10 0.00?200.00 gain 1 = 0.01 parameters ? complete descriptions index name/selection description def, fbeq gain = k p = 1 t i = integration time = 0 t d = derivation time = 0 controller error value controller output t % e = error value output = k p e
actual signals and parameters 190 2302 integration time defines an integration time for the speed controller. the integration time defines the rate at which the controller output changes when the error value is constant. the shorter the integration time, the faster the continuous error value is corrected. too short an integration time makes the control unstable. the figure below shows the speed controller output after an error step when the error remains constant. note: for automatic setting of the integration time, use autotune run (parameter 2305 autotune run). 2.5 0.00?600.00 s time 1 = 0.01 s 2303 derivation time defines the derivation time for the speed controller. derivative action boosts the controller output if the error value changes. the longer the derivation time, the more the speed controller output is boosted during the change. if the derivation time is set to zero, the controller works as a pi controller, otherwise as a pid controller. the derivation makes the control more responsive for disturbances. the figure below shows the speed controller output after an error step when the error remains constant. 0 0.?10000 ms time 1 = 1 ms parameters ? complete descriptions index name/selection description def, fbeq t i controller output t % gain = k p = 1 t i = integration time > 0 t d = derivation time = 0 k p e e = error value k p e gain = k p = 1 t i = integration time > 0 t d = derivation time > 0 t s = sample time period = 2 ms e = error value change between two samples t i k p e controller output t % e = error value k p t d e t s k p e error value
actual signals and parameters 191 2304 acc compensation defines the derivation time for acceleration/(deceleration) compensation. in order to compensate inertia during acceleration a derivative of the reference is added to the output of the speed controller. the principle of a derivative action is described for parameter 2303 derivation time. note: as a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. (the speed controller autotune run does this automatically, see parameter 2305 autotune run.) the figure below shows the speed responses when a high inertia load is accelerated along a ramp. 0 0.00?600.00 s time 1 = 0.01 s 2305 autotune run start automatic tuning of the speed controller. instructions: - run the motor at a constant speed of 20 to 40% of the rated speed. - change the autotuning parameter 2305 to on. note: the motor load must be connected to the motor. off off no autotuning 0 on activates the speed controller autotuning. the drive - accelerates the motor. - calculates values for proportional gain, integration time and acceleration compensation (parameter 2301 prop gain, 2302 integration time and 2304 acc compensation values). setting is automatically reverted to off. 1 24 torque control torque control variables 2401 torq ramp up defines the torque reference ramp up time, i.e the minimum time for the reference to increase from zero to the nominal motor torque. 0 0.00?120.00 s time 1 = 0.01 s 2402 torq ramp down defines the torque reference ramp down time, i.e the minimum time for the reference to decrease from the nominal motor torque to zero. 0 0.00?120.00 s time 1 = 0.01 s parameters ? complete descriptions index name/selection description def, fbeq speed reference actual speed * no acceleration compensation acceleration compensation t t % %
actual signals and parameters 192 25 critical speeds speed bands within which the drive is not allowed to operate. 2501 crit speed sel activates/deactivates the critical speeds function. the critical speed function avoids specific speed ranges. example: a fan has vibrations in the range of 18 to 23 hz and 46 to 52 hz. to make the drive to jump over the vibration speed ranges: - activate the critical speeds function. - set the critical speed ranges as in the figure below. off off inactive 0 on active 1 2502 crit speed 1 lo defines the minimum limit for critical speed/frequency range 1. 0 0.0?500.0 hz / 0?30000 rpm limit in rpm. limit in hz if parameter 9904 motor ctrl mode setting is scalar:freq. the value cannot be above the maximum (parameter 2503 crit speed 1 hi). 1 = 0.1 hz / 1rpm 2503 crit speed 1 hi defines the maximum limit for critical speed/frequency range 1. 0 0.0?500.0 hz / 0?30000 rpm limit in rpm. limit in hz if parameter 9904 motor ctrl mode setting is scalar:freq. the value cannot be below the minimum (parameter 2502 crit speed 1 lo). 1 = 0.1 hz / 1rpm 2504 crit speed 2 lo see parameter 2502 crit speed 1 lo. 0 0.0?500.0 hz / 0?30000 rpm see parameter 2502 . 1 = 0.1 hz / 1rpm 2505 crit speed 2 hi see parameter 2503 crit speed 1 hi. 0 0.0?500.0 hz / 0?30000 rpm see parameter 2503 . 1 = 0.1 hz / 1rpm 2506 crit speed 3 lo see parameter 2502 crit speed 1 lo. 0 0.0?500.0 hz / 0?30000 rpm see parameter 2502 . 1 = 0.1 hz / 1rpm 2507 crit speed 3 hi see parameter 2503 crit speed 1 hi. 0 0.0?500.0 hz / 0?30000 rpm see parameter 2503 . 1 = 0.1 hz / 1rpm 26 motor control motor control variables 2601 flux opt enable activates/deactivates the flux optimisation function. flux optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. the total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed. the disadvantage of this function is that the dynamic performance of the drive is weakened. off parameters ? complete descriptions index name/selection description def, fbeq f reference (hz) 18 23 46 52 f output (hz) 1par. 2502 = 18 hz 2par. 2503 = 23 hz 3par. 2504 = 46 hz 4par. 2505 = 52 hz 1234
actual signals and parameters 193 off inactive 0 on active 1 2602 flux braking activates/deactivates the flux braking function. see section flux braking on page 108 . off off inactive 0 on active 1 2603 ir comp volt defines the output voltage boost at zero speed (ir compensation). the function is useful in applications with high break-away torque when vector control cannot be applied. to prevent overheating, set ir compensation voltage as low as possible. the figure below illustrates the ir compensation. note: the function can be used only when parameter 9904 motor ctrl mode setting is scalar:freq. type dependent 0.0?100.0 v voltage boost 1 = 0.1 v 2604 ir comp freq defines the frequency at which the ir compensation is 0 v. see figure in parameter 2603 ir comp volt. note: if parameter 2605 u/f ratio is set to user defined, this parameter is not active. the ir compensation frequency is set by parameter 2610 user defined u1. 80 0...100% value in percent of the motor frequency 1 = 1% 2605 u/f ratio selects the voltage to frequency (u/f) ratio below the field weakening point. linear linear linear ratio for constant torque applications. 1 squared squared ratio for centrifugal pump and fan applications. with squared u/f ratio the noise level is lower for most operating frequencies. 2 user defined custom ratio defined by parameters 2610 ... 2618 . see section custom u/f ratio on page 112 . 3 2606 switching freq defines the switching frequency of the drive. higher switching frequency results in lower acoustic noise. see also parameter 2607 switc freq ctrl and switching frequency derating on page 291 . 4 4 khz can be used with scalar and vector control. the control mode is selected by parameter 9904 motor ctrl mode. 1 = 1 khz 8 khz can be used with scalar and vector control. the control mode is selected by parameter 9904 motor ctrl mode. 12 khz can be used with scalar and vector control. the control mode is selected by parameter 9904 motor ctrl mode. 16 khz can be used only with scalar control (i.e. when parameter 9904 motor ctrl mode setting is scalar:freq). parameters ? complete descriptions index name/selection description def, fbeq motor f (hz) a b voltage a = ir compensated b = no compensation 2603 2604 typical ir compensation values: p n (kw) 0.37 0.75 2.2 4.0 7.5 200?240 v units ir comp (v) 8.4 7.7 5.6 8.4 n/a 380?480 v units ir comp (v) 14 14 5.6 8.4 7
actual signals and parameters 194 2607 switch freq ctrl activates the switching frequency control. when active, the selection of parameter 2606 switching freq is limited when the drive internal temperature increases. see the figure below. this function allows the highest possible switching frequency at a specific operation point. higher switching frequency results in lower acoustic noise, but higher internal losses. on off inactive 0 on active 1 2608 slip comp ratio defines the slip gain for the motor slip compensation control. 100% means full slip compensation, 0% means no slip compensation. other values can be used if a static speed error is detected despite of the full slip compensation. can be used only with scalar control (i.e. when parameter 9904 motor ctrl mode setting is scalar:freq). example: 35 hz constant speed reference is given to the drive. despite of the full slip compensation (slip comp ratio = 100%), a manual tachometer measurement from the motor axis gives a speed value of 34 hz. the static speed error is 35 hz - 34 hz = 1 hz. to compensate the error, the slip gain should be increased. 0 0...200% slip gain 1 = 1% 2609 noise smoothing enables the noise smoothing function. noise smoothing distributes the acoustic motor noise over a range of frequencies instead of a single tonal frequency resulting in lower peak noise intensity. a random component with an average of 0 hz is added to the switching frequency set by parameter 2606 switching freq. note: parameter has no effect if parameter 2606 switching freq is set to 16 khz. disable disable disabled 0 enable enabled 1 2610 user defined u1 defines the first voltage point of the custom u/f curve at the frequency defined by parameter 2611 user defined f1. see section custom u/f ratio on page 112 . 19% of u n 0...120% of u n v voltage 1 = 1 v 2611 user defined f1 defines the first frequency point of the custom u/f curve. 10 0.0...500.0 hz frequency 1 = 0.1 hz 2612 user defined u2 defines the second voltage point of the custom u/f curve at the frequency defined by parameter 2613 user defined f2. see section custom u/f ratio on page 112 . 38% of u n 0...120% of u n v voltage 1 = 1 v parameters ? complete descriptions index name/selection description def, fbeq 80...100c * 100...120c * drive 4 khz 16 khz temperature f sw limit t * temperature depends on the drive output frequency.
actual signals and parameters 195 2613 user defined f2 defines the second frequency point of the custom u/f curve. 20 0.0...500.0 hz frequency 1 = 0.1 hz 2614 user defined u3 defines the third voltage point of the custom u/f curve at the frequency defined by parameter 2615 user defined f3. see section custom u/f ratio on page 112 . 47.5% of u n 0...120% of u n v voltage 1 = 1 v 2615 user defined f3 defines the third frequency point of the custom u/f curve. 25 0.0...500.0 hz frequency 1 = 0.1 hz 2616 user defined u4 defines the fourth voltage point of the custom u/f curve at the frequency defined by parameter 2617 user defined f4. see section custom u/f ratio on page 112 . 76% of u n 0...120% of u n v voltage 1 = 1 v 2617 user defined f4 defines the fourth frequency point of the custom u/f curve. 40 0.0...500.0 hz frequency 1 = 0.1 hz 2618 fw voltage defines the voltage of the u/f curve when frequency is equal to or exceeds the motor nominal frequency ( 9907 motor nom freq). see section custom u/f ratio on page 112 . 95% of u n 0...120% of u n v voltage 1 = 1 v 29 maintenance trig maintenance triggers 2901 cooling fan trig defines the trigger point for the drive cooling fan run time counter. value is compared to parameter 2902 cooling fan act value. 0 0.0...6553.5 kh time. if parameter value is set to zero, the trigger is disabled. 1 = 0.1 kh 2902 cooling fan act defines the actual value for the cooling fan run time counter. when parameter 2901 cooling fan trig has been set to a non zero value, the counter starts. when the actual value of the counter exceeds the value defined by parameter 2901 , a maintenance notice is displayed on the panel. 0 0.0...6553.5 kh time. parameter is reset by setting it to zero. 1 = 0.1 kh 2903 revolution trig defines the trigger point for the motor revolution counter. value is compared to parameter 2904 revolution act value. 0 0...65535 mrev millions of revolutions. if parameter value is set to zero, the trigger is disabled. 1 = 1 mrev 2904 revolution act defines the actual value for the motor revolution counter. when parameter 2903 revolution trig has been set to a non zero value, the counter starts. when the actual value of the counter exceeds the value defined by parameter 2903 , a maintenance notice is displayed on the panel. 0 0...65535 mrev millions of revolutions. parameter is reset by setting it to zero. 1 = 1 mrev 2905 run time trig defines the trigger point for the drive run time counter. value is compared to parameter 2906 run time act value. 0 0.0...6553.5 kh time. if parameter value is set to zero, the trigger is disabled. 1 = 0.1 kh 2906 run time act defines the actual value for the drive run time counter. when parameter 2905 run time trig has been set to a non zero value, the counter starts. when the actual value of the counter exceeds the value defined by parameter 2905 , a maintenance notice is displayed on the panel. 0 0.0...6553.5 kh time. parameter is reset by setting it to zero. 1 = 0.1 kh parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 196 2907 user mwh trig defines the trigger point for the drive power consumption counter. value is compared to parameter 2908 user mwh act value. 0 0.0...6553.5 mwh megawatt hours. if parameter value is set to zero, the trigger is disabled. 1 = 0.1 mwh 2908 user mwh act defines the actual value of the drive power consumption counter. when parameter 2907 user mwh trig has been set to a non zero value, the counter starts. when the actual value of the counter exceeds the value defined by parameter 2907 , a maintenance notice is displayed on the panel. 0 0.0...6553.5 mwh megawatt hours. parameter is reset by setting it to zero. 1 = 0.1 mwh 30 fault functions programmable protection functions 3001 ai actual signals and parameters 197 di5 see selection di1. 5 di1(inv) external fault indication through inverted digital input di1. 0: fault trip (ext fault 1). motor coasts to stop. 1: no external fault. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 3004 external fault 2 selects an interface for an external fault 2 signal. not sel see parameter 3003 external fault 1. 3005 mot therm prot selects how the drive reacts when the motor overtemperature is detected. fault not sel protection is inactive. 0 fault the drive trips on fault mot overtemp when the temperature exceeds 110c, and the motor coasts to a stop. 1 alarm the drive generates alarm motor temp when the motor temperature exceeds 90c. 2 3006 mot therm time defines the thermal time constant for the motor thermal model, i.e. the time within the motor temperature has reached 63% of the nominal temperature with steady load. for thermal protection according to ul requirements for nema class motors, use the rule of thumb: motor thermal time = 35 t6. t6 (in seconds) is specified by the motor manufacturer as the time the motor can safely operate at six times its rated current. thermal time for a class 10 trip curve is 350 s, for a class 20 trip curve 700 s, and for a class 30 trip curve 1050 s. 500 256?9999 s time constant 1 = 1 s parameters ? complete descriptions index name/selection description def, fbeq te m p . ris e 100% 63% t t } par. 3006 motor load
actual signals and parameters 198 3007 mot load curve defines the load curve together with parameters 3008 zero speed load and 3009 break point freq. if value is set to 100%, the maximum allowed load is equal to parameter 9906 motor nom curr value. load curve should be adjusted, if the ambient temperature differs from nominal temperature. 100 50.?150% allowed continuous motor load in percent of the nominal motor current 1 = 1% 3008 zero speed load defines the load curve together with parameters 3007 mot load curve and 3009 break point freq. 70 25.?150% allowed continuous motor load at zero speed in percent of the nominal motor current 1 = 1% 3009 break point freq defines the load curve together with parameters 3007 mot load curve and 3008 zero speed load. example: thermal protection trip times when parameters 3006 ? 3008 have default values. 35 1?250 hz drive output frequency at 100% load 1 = 1 hz parameters ? complete descriptions index name/selection description def, fbeq f 150 100 50 par. 3009 i = output current i n = nominal motor current i / i n par. 3008 par. 3007 60 s 3.5 i o = output current i n = nominal motor current f o = output frequency f brk = break point frequency a = trip time 3.0 2.5 2.0 1.5 1.0 0.5 0 0 0.2 0.4 0.8 1.0 1.2 i o / i n f o / f brk 90 s 180 s 300 s 600 s 0.6 180 s a
actual signals and parameters 199 3010 stall function selects how the drive reacts to a motor stall condition. the protection wakes up if the drive has operated in a stall region (see figure below) longer than the time set by parameter 3012 stall time. not sel not sel protection is inactive. 0 fault the drive trips on fault motor stall and the motor coast to a stop. 1 alarm the drive generates alarm motor stall. 2 3011 stall frequency defines the frequency limit for the stall function. see parameter 3010 stall function. 20 0.5?50.0 hz frequency 1 = 0.1 hz 3012 stall time defines the time for the stall function. see parameter 3010 stall function. 20 10?400 s time 1 = 1 s 3013 underload func selects how the drive reacts to underload. the protection wakes up if: - the motor torque falls below the curve selected by parameter 3015 underload curve, - output frequency is higher than 10% of the nominal motor frequency and - the above conditions have been valid longer than the time set by parameter 3014 underload time. not sel not sel protection is inactive. 0 fault the drive trips on fault underload and the motor coasts to a stop. note: set parameter value to fault only after the drive id run is performed! if fault is selected, the drive may generate an underload fault during id run. 1 alarm the drive generates alarm underload. 2 3014 underload time defines the time limit for the underload function. see parameter 3013 underload func. 20 10?400 s time limit 1 = 1 s parameters ? complete descriptions index name/selection description def, fbeq f torque (%) / par. 3011 stall region 0.95 user defined limit with vector control user defined limit = 2017 max torque 1 / 2018 max torque 2 / (applies for positive and negative torques) with scalar control user defined limit = 2003 max current current (a) the control mode is selected by parameter 9904 motor ctrl mode.
actual signals and parameters 200 3015 underload curve selects the load curve for the underload function. see parameter 3013 underload func. 1 1?5 number of the load curve 1 = 1 3016 supply phase selects how the drive reacts to supply phase loss, i.e. when dc voltage ripple is excessive. fault fault the drive trips on fault supply phase and the motor coasts to a stop when the dc voltage ripple exceeds 14% of the nominal dc voltage. 0 limit/alarm drive output current is limited and alarm input phase loss is generated when the dc voltage ripple exceeds 14% of the nominal dc voltage. there is a 10 s delay between the activation of the alarm and the output current limitation. the current is limited until the ripple drops under the minimum limit, 0.3 i hd . 1 alarm the drive generates alarm input phase loss when the dc ripple exceeds 14% of the nominal dc voltage. 2 3017 earth fault selects how the drive reacts when an earth (ground) fault is detected in the motor or the motor cable. note: changing this parameter setting is not recommended. enable disable no action 0 enable the drive trips on fault earth fault. 1 3018 comm fault func selects how the drive reacts in a fieldbus communication break. the time delay is defined by parameter 3019 comm fault time. not sel not sel protection is inactive. 0 fault protection is active. the drive trips on fault serial 1 err and coasts to stops. 1 const sp 7 protection is active. the drive generates alarm io comm and sets the speed to the value defined by parameter 1208 const speed 7. warning ! make sure that it is safe to continue operation in case of a communication break. 2 parameters ? complete descriptions index name/selection description def, fbeq 80 60 40 20 0 2.4 ? n 3 2 1 5 4 t m 70% 50% 30% ? n (%) underload curve types f t m = nominal torque of the motor ? n = nominal frequency of the motor ( 9907 )
actual signals and parameters 201 last speed protection is active. the drive generates alarm io comm and freezes the speed to the level the drive was operating at. the speed is determined by the average speed over the previous 10 seconds. warning ! make sure that it is safe to continue operation in case of a communication break. 3 3019 comm fault time defines the time delay for the fieldbus communication break supervision. see parameter 3018 comm fault func. 3 0.0...60.0 s delay time 1 = 0.1 s 3021 ai1 fault limit defines a fault level for analog input ai1. if parameter 3001 ai actual signals and parameters 202 3103 delay time defines the time that the drive will wait after a fault before attempting an automatic reset. see parameter 3101 nr of trials. if delay time is set to zero, the drive resets immediately. 0 0.0?120.0 s time 1 = 0.1 s 3104 ar overcurrent activates/deactivates the automatic reset for the overcurrent fault. automatically resets the fault (overcurrent) after the delay set by par. 3103 delay time. disable disable inactive 0 enable active 1 3105 ar overvoltage activates/deactivates the automatic reset for the intermediate link overvoltage fault. automatically resets the fault (dc overvolt) after the delay set by par. 3103 delay time. disable disable inactive 0 enable active 1 3106 ar undervoltage activates/deactivates the automatic reset for the intermediate link undervoltage fault. automatically resets the fault (dc undervoltage) after the delay set by par. 3103 delay time. disable disable inactive 0 enable active 1 3107 ar ai actual signals and parameters 203 32 supervision signal supervision. supervision status can be monitored with relay or transistor output. see parameter groups 14 relay outputs and 18 freq in & tran out . 3201 superv 1 param selects the first supervised signal. supervision limits are defined by parameters 3202 superv 1 lim lo and 3203 superv 1 lim hi. example 1: if 3202 superv 1 lim lo < 3203 superv 1 lim hi case a = 1401 relay output 1 value is set to suprv1 over. relay energises when value of the signal selected with 3201 superv 1 param exceeds the supervision limit defined by 3203 superv 1 lim hi. the relay remains active until the supervised value drops below the low limit defined by 3202 superv 1 lim lo. case b = 1401 relay output 1 value is set to suprv 1 under. relay energises when value of the signal selected with 3201 superv 1 param drops below the supervision limit defined by 3202 superv 1 lim lo. the relay remains active until the supervised value rises above the high limit defined by 3203 superv 1 lim hi. example 2: if 3202 superv 1 lim lo > 3203 superv 1 lim hi the lower limit 3203 superv 1 lim hi remains active until the supervised signal exceeds the higher limit 3202 superv 1 lim lo, making it the active limit. the new limit remains active until the supervised signal drops below the lower limit 3203 superv 1 lim hi, making it the active limit. case a = 1401 relay output 1 value is set to suprv1 over. relay is energized whenever the supervised signal exceeds the active limit. case b = 1401 relay output 1 value is set to suprv1 under. relay is de-energized whenever the supervised signal drops below the active limit. 103 parameters ? complete descriptions index name/selection description def, fbeq value of supervised parameter case a 0 energized (1) 0 hi (par. 3203) t t t lo (par. 3202) case b energized (1) lo (par. 3202) t hi (par. 3203) value of supervised parameter case a 0 energized (1) 0 t t case b energized (1) active limit
actual signals and parameters 204 0, x?x parameter index in group 01 operating data . e.g. 102 = 0102 speed. 0 = not selected. 1 = 1 3202 superv 1 lim lo defines the low limit for the first supervised signal selected by parameter 3201 superv 1 param. supervision wakes up if the value is below the limit. - x?x setting range depends on parameter 3201 setting. - 3203 superv 1 lim hi defines the high limit for the first supervised signal selected by parameter 3201 superv 1 param. supervision wakes up if the value is above the limit. - x?x setting range depends on parameter 3201 setting. - 3204 superv 2 param selects the second supervised signal. supervision limits are defined by parameters 3205 superv 2 lim lo and 3206 superv 2 lim hi. see parameter 3201 superv 1 param. 104 x?x parameter index in group 01 operating data . e.g. 102 = 0102 speed 1 = 1 3205 superv 2 lim lo defines the low limit for the second supervised signal selected by parameter 3204 superv 2 param. supervision wakes up if the value is below the limit. - x?x setting range depends on parameter 3204 setting. - 3206 superv 2 lim hi defines the high limit for the second supervised signal selected by parameter 3204 superv 2 param. supervision wakes up if the value is above the limit. - x?x setting range depends on parameter 3204 setting. - 3207 superv 3 param selects the third supervised signal. supervision limits are defined by parameters 3208 superv 3 lim lo and 3209 superv 3 lim hi. see parameter 3201 superv 1 param. 105 x?x parameter index in group 01 operating data . e.g. 102 = 0102 speed 1 = 1 3208 superv 3 lim lo defines the low limit for the third supervised signal selected by parameter 3207 superv 3 param. supervision wakes up if the value is below the limit. - x?x setting range depends on parameter 3207 setting. - 3209 superv 3 lim hi defines the high limit for the third supervised signal selected by parameter 3207 superv 3 param. supervision wakes up if the value is above the limit. - x?x setting range depends on parameter 3207 setting. - 33 information firmware package version, test date etc. 3301 firmware displays the version of the firmware package. 0.0000?ffff (hex) e.g. 241a 3302 loading package displays the version of the loading package. type dependent 0x2001?0x20ff (hex) 0x2001 = acs350-0x (eur gmd) 3303 test date displays the test date. 00.00 date value in format yy.ww (year, week) parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 205 3304 drive rating displays the drive current and voltage ratings. 0x0000 0x0000?0xffff (hex) value in format xxxy: xxx = nominal current of the drive in amperes. an ?a? indicates decimal point. for example if xxx is 8a8, nominal current is 8.8 a. y = nominal voltage of the drive: 1 = 1-phase 200?240 v 2 = 3-phase 200?240 v 4 = 3-phase 380?480 v 3305 parameter table displays the version of the parameter table used in the drive. 34 panel display selection of actual signals to be displayed on the panel 3401 signal1 param selects the first signal to be displayed on the control panel in display mode. 103 0, 101?172 parameter index in group 01 operating data . e.g. 102 = 0102 speed. if value is set to 0, no signal is selected. 1 = 1 3402 signal1 min defines the minimum value for the signal selected by parameter 3401 signal1 param. note: parameter is not effective if parameter 3404 output1 dsp form setting is direct. - x?x setting range depends on parameter 3401 setting. - 3403 signal1 max defines the maximum value for the signal selected by parameter 3401 signal1 param. see figure in parameter 3402 signal1 min. note: parameter is not effective if parameter 3404 output1 dsp form setting is direct. - x?x setting range depends on parameter 3401 setting. - parameters ? complete descriptions index name/selection description def, fbeq 0137 0138 0139 3404 3405 assistant panel source value 3407 3406 3403 3402 display value
actual signals and parameters 206 3404 output1 dsp form defines the format for the displayed signal (selected by par. 3401 signal1 param). direct +/-0 signed/unsigned value. unit is selected by parameter 3405 output 1 unit. example pi (3.14159): 0 +/-0.0 1 +/-0.00 2 +/-0.000 3 +0 4 +0.0 5 +0.00 6 +0.000 7 bar meter bar graph 8 direct direct value. decimal point location and units of measure are identical to the source signal. note: parameters 3402 , 3403 and 3405 ... 3407 are not effective. 9 3405 output1 unit selects the unit for the for the displayed signal selected by parameter 3401 signal1 param. note: parameter is not effective if parameter 3404 output1 dsp form setting is direct. note: unit selection does not convert values. hz no unit no unit selected 0 a ampere 1 vvolt 2 hz hertz 3 % percent 4 s second 5 hhour 6 rpm revolutions per minute 7 kh kilohour 8 c celsius 9 lb ft pounds per foot 10 ma milliampere 11 mv millivolt 12 kw kilowatt 13 wwatt 14 kwh kilowatt hour 15 f fahrenheit 16 hp horsepower 17 mwh megawatt hour 18 m/s meters per second 19 m3/h cubic metres per hour 20 parameters ? complete descriptions index name/selection description def, fbeq 3404 value display range +/-0 + 3 -32768...+32767 +/-0.0 + 3.1 +/-0.00 + 3.14 +/-0.000 + 3.142 +0 3 0....65535 +0.0 3.1 +0.00 3.14 +0.000 3.142
actual signals and parameters 207 dm3/s cubic decimetres per second 21 bar bar 22 kpa kilopascal 23 gpm gallons per minute 24 psi pounds per square inch 25 cfm cubic feet per minute 26 ft foot 27 mgd millions of gallons per day 28 inhg inches of mercury 29 fpm feet per minute 30 kb/s kilobytes per second 31 khz kilohertz 32 ohm ohm 33 ppm pulses per minute 34 pps pulses per second 35 l/s litres per second 36 l/min litres per minute 37 l/h litres per hour 38 m3/s cubic metres per second 39 m3/m cubic meters per minute 40 kg/s kilograms per second 41 kg/m kilograms per minute 42 kg/h kilograms per hour 43 mbar millibar 44 pa pascal 45 gps gallons per second 46 gal/s gallons per second 47 gal/m gallons per minute 48 gal/h gallons per hour 49 ft3/s cubic feet per second 50 ft3/m cubic feet per minute 51 ft3/h cubic feet per hour 52 lb/s pounds per second 53 lb/m pounds per minute 54 lb/h pounds per hour 55 fps feet per second 56 ft/s feet per second 57 inh2o inches of water 58 in wg inches of water gauge 59 ft wg feet on water gauge 60 lbsi pounds per squared inch 61 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 208 ms millisecond 62 mrev millions of revolutions 63 ddays 64 inwc inches of water column 65 m/min meters per minute 66 nm newton meter 67 %ref reference in percentage 117 %act actual value in percentage 118 %dev deviation in percentage 119 % ld load in percentage 120 % sp set point in percentage 121 %fbk feedback in percentage 122 iout output current (in percentage) 123 vout output voltage 124 fout output frequency 125 tout output torque 126 vdc dc voltage 127 3406 output1 min sets the minimum display value for the signal selected by parameter 3401 signal1 param. see par. 3402 signal1 min. note: parameter is not effective if parameter 3404 output1 dsp form setting is direct. - x?x setting range depends on parameter 3401 setting. - 3407 output1 max sets the maximum display value for the signal selected by parameter 3401 signal1 param. see par. 3402 signal1 min. note: parameter is not effective if parameter 3404 output1 dsp form setting is direct. - x?x setting range depends on parameter 3401 setting. - 3408 signal2 param selects the second signal to be displayed on the control panel in display mode. see par. 3401 signal1 param. 104 0, 101?172 parameter index in group 01 operating data . e.g. 102 = 0102 speed. if value is set to 0, no signal is selected. 1 = 1 3409 signal2 min defines the minimum value for the signal selected by parameter 3408 signal2 param. see par. 3402 signal1 min. - x?x setting range depends on parameter 3408 setting. - 3410 signal2 max defines the maximum value for the signal selected by parameter 3408 signal2 param. see par 3402 signal1 min. - x?x setting range depends on parameter 3408 setting. - 3411 output2 dsp form defines the format for the displayed signal selected by par. 3408 signal2 param. direct see parameter 3404 output1 dsp form. - 3412 output2 unit selects the unit for the for the displayed signal selected by parameter 3408 signal2 param. - see parameter 3405 output1 unit. - parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 209 3413 output2 min sets the minimum display value for the signal selected by parameter 3408 signal2 param. see par. 3402 signal1 min. - x?x setting range depends on parameter 3408 setting. - 3414 output2 max sets the maximum display value for the signal selected by parameter 3408 signal2 param. see par. 3402 signal1 min. - x?x setting range depends on parameter 3408 setting. - 3415 signal3 param selects the third signal to be displayed on the control panel in display mode. see par 3401 signal1 param. 105 0, 101?172 parameter index in group 01 operating data . e.g. 102 = 0102 speed. if value is set to 0, no signal is selected. 1 = 1 3416 signal3 min defines the minimum value for the signal selected by parameter 3415 . see par. 3402 signal1 min. - x?x setting range depends on parameter 3415 signal 3 param setting. - 3417 signal3 max defines the maximum value for the signal selected by parameter 3415 signal3 param. see par. 3402 signal1 min. - x?x setting range depends on parameter 3415 signal3 param setting. - 3418 output3 dsp form defines the format for the displayed signal selected by par. 3415 signal3 param. direct see parameter 3404 output1 dsp form. - 3419 output3 unit selects the unit for the for the displayed signal selected by parameter 3415 signal3 param. - see parameter 3405 output1 unit. - 3420 output3 min sets the minimum display value for the signal selected by parameter 3415 signal3 param. see par. 3402 signal1 min. - x?x setting range depends on parameter 3415 signal3 param setting. - 3421 output3 max sets the maximum display value for the signal selected by parameter 3415 signal3 param . see par. 3402 signal1 min. - x?x setting range depends on parameter 3415 setting. - 35 motor temp meas motor temperature measurement. see section motor temperature measurement through the standard i/o on page 124 . 3501 sensor type activates the motor temperature measurement function and selects the sensor type. see also parameter group 15 analogue outputs . none none the function is inactive. 0 1 x pt100 the function is active. the temperature is measured with one pt 100 sensor. analog output ao feeds constant current through the sensor. the sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. the temperature measurement function reads the voltage through analog input ai1/2 and converts it to degrees centigrade. 1 2 x pt100 the function is active. temperature is measured using two pt 100 sensors. see selection 1 x pt100. 2 3 x pt100 the function is active. temperature is measured using three pt 100 sensors. see selection 1 x pt100. 3 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 210 ptc the function is active. the temperature is supervised using ptc sensor. analog output ao feeds constant current through the sensor. the resistance of the sensor increases sharply as the motor temperature rises over the ptc reference temperature (tref), as does the voltage over the resistor. the temperature measurement function reads the voltage through analog input ai1/2 and converts it into ohms. the figure below shows typical ptc sensor resistance values as a function of the motor operating temperature. 4 therm(0) the function is active. motor temperature is monitored using a ptc sensor (see selection ptc) connected to drive via a normally closed thermistor relay connected to a digital input. 0 = motor overtemperature. 5 therm(1) the function is active. motor temperature is monitored using a ptc sensor (see selection ptc) connected to drive via a normally open thermistor relay connected to a digital input. 1 = motor overtemperature. 6 3502 input selection selects the source for the motor temperature measurement signal. ai1 ai1 analog input ai1. used when pt100 or ptc sensor is selected for the temperature measurement. 1 ai2 analog input ai2. used when pt100 or ptc sensor is selected for the temperature measurement 2 di1 digital input di1. used when par. 3501 sensor type value is set to thermi(0)/(1). 3 di2 digital input di2. used when par. 3501 sensor type value is set to thermi(0)/(1). 4 di3 digital input di3. used when par. 3501 sensor type value is set to thermi(0)/(1). 5 di4 digital input di4. used when par. 3501 sensor type value is set to thermi(0)/(1). 6 di5 digital input di5. used when par. 3501 sensor type value is set to thermi(0)/(1). 7 3503 alarm limit defines the alarm limit for motor temperature measurement. alarm motor temp indication is given when the limit is exceeded. when par. 3501 sensor type value is set to thermi(0)/(1): 1 = alarm. 0 x?x alarm limit - 3504 fault limit defines the fault trip limit for motor temperature measurement. the drive trips on fault mot overtemp when the limit is exceeded. when par. 3501 sensor type value is set to thermi(0)/(1): 1 = fault. 0 x?x fault limit - parameters ? complete descriptions index name/selection description def, fbeq 100 550 1330 4000 ohm t temperature resistance normal 0 ? 1.5 kohm excessive > 4 kohm
actual signals and parameters 211 3505 ao excitation enables current feed from analog output ao. parameter setting overrides parameter group 15 analogue outputs settings. with ptc the output current is 1.6 ma. with pt 100 the output current is 9.1 ma. disable disable disabled 0 enable enabled 1 36 timed functions time periods 1 to 4 and booster signal. see section timed functions on page 131 . 3601 timers enable selects the source for the timed function enable signal. not sel not sel timed function is not selected. 0 di1 digital input di. timed function enable by a rising edge of di1. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 active timed function is always enabled. 7 di1(inv) inverted digital input di1. timed function enable by a falling edge of di1. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 3602 start time 1 defines the daily start time 1. the time can be changed in 2 second steps. 00:00:00 00:00:00?23:59:58 hours:minutes:seconds. example: if parameter value is set to 07:00:00, the timed function is activated at 7:00 (7 a.m). 3603 stop time 1 defines the daily stop time 1. the time can be changed in 2 second steps. 00:00:00 00:00:00?23:59:58 hours:minutes:seconds. example: if parameter value is set to 18:00:00, the timed function is deactivated at 18:00 (6 p.m). 3604 start day 1 defines the start day 1. monday monday example: if parameter value is set to monday, timed function 1 is active from monday midnight (00:00:00). 1 tuesday 2 wednesday 3 thursday 4 friday 5 saturday 6 sunday 7 3605 stop day 1 defines the stop day 1. monday see parameter 3604 . if parameter is set to friday, timed function 1 is deactivated on friday midnight (23:59:58). 3606 start time 2 see parameter 3602 start time 1. see parameter 3602 start time 1. 3607 stop time 2 see parameter 3603 stop time 1. see parameter 3603 stop time 1. parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 212 3608 start day 2 see parameter 3604 start day 1. see parameter 3604 start day 1. 3609 stop day 2 see parameter 3605 stop day 1. see parameter 3605 stop day 1. 3610 start time 3 see parameter 3602 start time 1. see parameter 3602 start time 1. 3611 stop time 3 see parameter 3603 stop time 1. see parameter 3603 stop time 1. 3612 start day 3 see parameter 3604 start day 1. see parameter 3604 start day 1. 3613 stop day 3 see parameter 3605 stop day 1. see parameter 3605 stop day 1. 3614 start time 4 see parameter 3602 start time 1. see parameter 3602 start time 1. 3615 stop time 4 see parameter 3603 stop time 1. see parameter 3603 stop time 1. 3616 start day 4 see parameter 3604 start day 1. see parameter 3604 start day 1. 3617 stop day 4 see parameter 3605 stop day 1. see parameter 3605 stop day 1. 3622 booster sel selects the source for the booster activation signal. not sel not sel no booster activation signal 0 di1 digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 di1(inv) inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 213 3623 booster time defines the time inside which the booster is deactivated after the booster activation signal is switched off. 00:00:00 00:00:00?23:59:58 hours:minutes:seconds example: if parameter 3622 booster sel is set to di1 and 3623 booster time is set to 01:30:00, the booster is active for 1 hour and 30 minutes after digital input di is deactivated. 3626 timed func 1 src selects the time periods for timed func 1 scr. timed function can consists of 0...4 time periods and a booster. not sel not sel no time periods selected 0 t1 time period 1 1 t2 time period 2 2 t1+t2 time periods 1 and 2 3 t3 time period 3 4 t1+t3 time periods 1 and 3 5 t2+t3 time periods 2 and 3 6 t1+t2+t3 time periods 1, 2 and 3 7 t4 time period 4 8 t1+t4 time periods 1 and 4 9 t2+t4 time periods 2 and 4 10 t1+t2+t4 time periods 1, 2 and 4 11 t3+t4 time periods 4 and 3 12 t1+t3+t4 time periods 1, 3 and 4 13 t2+t3+t4 time periods 2, 3 and 4 14 t1+t2+t3+t4 time periods 1, 2, 3 and 4 15 booster booster 16 t1+b booster and time period 1 17 t2+b booster and time period 2 18 t1+t2+b booster and time periods 1 and 2 19 t3+b booster and time period 3 20 t1+t3+b booster and time periods 1 and 3 21 t2+t3+b booster and time periods 2 and 3 22 t1+t2+t3+b booster and time periods 1, 2 and 3 23 t4+b booster and time period 4 24 t1+t4+b booster and time periods 1 and 4 25 t2+t4+b booster and time periods 2 and 4 26 t1+t2+t4+b booster and time periods 1, 2 and 4 27 parameters ? complete descriptions index name/selection description def, fbeq booster active di booster time
actual signals and parameters 214 t3+t4+b booster and time periods 3 and 4 28 t1+t3+t4+b booster and time periods 1, 3 and 4 29 t2+t3+t4+b booster and time periods 2, 3 and 4 30 t1+2+3+4+b booster and time periods 1, 2, 3 and 4 31 3627 timed func 2 src see parameter 3626 timed func 1 src. see parameter 3626 timed func 1 src. 3628 timed func 3 src see parameter 3626 timed func 1 src. see parameter 3626 timed func 1 src. 3629 timed func 4 src see parameter 3626 timed func 1 src. see parameter 3626 timed func 1 src. 40 process pid set 1 process pid (pid1) control parameter set 1. see section pid control on page 120 . 4001 gain defines the gain for the process pid controller. great gain may cause speed oscillation. 1 0.1?100.0 gain. when value is set to 0.1, the pid controller output changes one-tenth as much as the error value. when value is set to 100, the pid controller output changes one hundred times as much as the error value. 1 = 0.1 4002 integration time defines the integration time for the process pid1 controller. the integration time defines the rate at which the controller output changes when the error value is constant. the shorter the integration time, the faster the continuous error value is corrected. too short an integration time makes the control unstable. 60 0.0?3600.0 s integration time. if parameter value is set to zero, integration (i-part of the pid controller) is disabled. 1 = 0.1 s parameters ? complete descriptions index name/selection description def, fbeq t 4002 a c (4001 = 1) b a = error b = error value step c = controller output with gain = 1 d = controller output with gain = 10 d (4001 = 10)
actual signals and parameters 215 4003 derivation time defines the derivation time for the process pid controller. derivative action boosts the controller output if the error value changes. the longer the derivation time, the more the speed controller output is boosted during the change. if the derivation time is set to zero, the controller works as a pi controller, otherwise as a pid controller. the derivation makes the control more responsive for disturbances. the derivative is filtered with a 1-pole filter. filter time constant is defined by parameter 4004 pid deriv filter. 0 0.0?10.0 s derivation time. if parameter value is set to zero, the derivative part of the pid controller is disabled. 1 = 0.1 s 4004 pid deriv filter defines the filter time constant for the derivative part of the process pid controller. increasing the filter time smooths the derivative and reduces noise. 1 0.0?10.0 s filter time constant. if parameter value is set to zero, the derivative filter is disabled. 1 = 0.1 s 4005 error value inv selects the relationship between the feedback signal and drive speed. no no normal: a decrease in feedback signal increases drive speed. error = ref - fbk 0 yes inverted: a decrease in feedback signal decreases drive speed. error = fbk - ref 1 4006 units selects the unit for pid controller actual values. % see parameter 3405 output1 unit selections no unit?mrev. 0?63 4007 unit scale defines the decimal point location for the display parameter selected by parameter 4006 units. 1 0?3 example pi (3.14159) 1 = 1 parameters ? complete descriptions index name/selection description def, fbeq t 100% gain process error value 4003 d-part of controller output pid output error t 0% 4001 4007 value entry display 0 0003 3 1 0031 3.1 2 0314 3.14 3 3142 3.142
actual signals and parameters 216 4008 0% value defines together with parameter 4009 100% value the scaling applied to the pid controller?s actual values. 0 x?x unit and range depend on the unit and scale defined by parameters 4006 units and 4007 unit scale. 4009 100% value defines together with parameter 4008 0% value the scaling applied to the pid controller?s actual values. 100 x...x unit and range depend on the unit and scale defined by parameters 4006 units and 4007 unit scale. 4010 set point sel selects the source for the process pid controller reference signal. ai1 keypad control panel 0 ai1 analog input ai1 1 ai2 analog input ai2 2 comm fieldbus reference ref2 8 comm+ai1 summation of fieldbus reference ref2 and analog input ai1. see section reference selection and correction on page 249 . 9 comm*ai1 multiplication of fieldbus reference ref2 and analog input ai1. see section reference selection and correction on page 249 . 10 di3u,4d(rnc) digital input 3: reference increase. digital input di4: reference decrease. stop command resets the reference to zero. the reference is not saved if the control source is changed from ext1 to ext2, from ext2 to ext1 or from loc to rem. 11 di3u,4d(nc) digital input 3: reference increase. digital input di4: reference decrease. the program stores the active reference (not reset by a stop command). the reference is not saved if the control source is changed from ext1 to ext2, from ext2 to ext1 or from loc to rem. 12 ai1+ai2 reference is calculated with the following equation: ref = ai1(%) + ai2(%) - 50% 14 ai1*ai2 reference is calculated with the following equation: ref = ai(%) (ai2(%) / 50%) 15 ai1-ai2 reference is calculated with the following equation: ref = ai1(%) + 50% - ai2(%) 16 ai1/ai2 reference is calculated with the following equation: ref = ai1(%) (50% / ai2 (%)) 17 internal a constant value defined by parameter 4011 internal setpnt 19 di4u,5d(nc) see selection di3u,4d(nc). 31 freq input frequency input 32 parameters ? complete descriptions index name/selection description def, fbeq internal scale (%) 4009 4008 100% 0% units (4006) scale (4007) -1000% +1000%
actual signals and parameters 217 seq prog out sequence programming output. see parameter group 84 sequence prog . 33 4011 internal setpnt selects a constant value as process pid controller reference, when parameter 4010 set point sel value is set to internal. 40 x?x unit and range depend on the unit and scale defined by parameters 4006 units and 4007 unit scale. 4012 setpoint min defines the minimum value for the selected pid reference signal source. see parameter 4010 set point sel 0 -500.0?500.0% value in percent. example: analog input ai1 is selected as the pid reference source (value of parameter 4010 is ai1). the reference minimum and maximum correspond the 1301 minimum ai1 and 1302 maximum ai1 settings as follows: 1 = 0.1% 4013 setpoint max defines the maximum value for the selected pid reference signal source. see parameters 4010 set point sel and 4012 setpoint min. 100 -500.0?500.0% value in percent 1 = 0.1% 4014 fbk sel selects the process actual value (feedback signal) for the process pid controller: the sources for the variables act1 and act2 are further defined by parameters 4016 act1 input and 4017 act2 input. act1 act1 act1 1 act1-act2 subtraction of act1 and act 2 2 act1+act2 addition of act1 and act2 3 act1*act2 multiplication of act1 and act2 4 act1/act2 division of act1 and act2 5 min(act1,2) selects the smaller of act1 and act2 6 max(act1,2) selects the higher of act1 and act2 7 sqrt(act1-2) square root of the subtraction of act1 and act2 8 sqa1+sqa2 addition of the square root of act1 and the square root of act2 9 sqrt(act1) square root of act1 10 comm fbk 1 signal 0158 pid comm value 1 value 11 comm fbk 2 signal 0159 pid comm value 2 value 12 4015 fbk multiplier defines an extra multiplier for the value defined by parameter 4014 fbk sel. parameter is used mainly in applications where feedback value is calculated from a other variable (e.g. flow from pressure difference). 0 -32.768?32.767 multiplier. if parameter value is set to zero, no multiplier is used. 1 = 0.001 4016 act1 input defines the source for actual value 1 (act1). see also parameter 4018 act1 minimum. ai2 ai1 uses analog input 1 for act1 1 parameters ? complete descriptions index name/selection description def, fbeq ref 4013 4012 1301 1302 ai1 (%) 1301 1302 ref (max) (min) 4013 4012 (max) (min) ai1 (%) max > min min > max
actual signals and parameters 218 ai2 uses analog input 2 for act2 2 current uses current for act1 3 torque uses torque for act1 4 power uses power for act1 5 comm act 1 uses value of signal 0158 pid comm value 1 for act1 6 comm act 2 uses value of signal 0159 pid comm value 2 for act1 7 freq input frequency input 8 4017 act2 input defines the source for actual value act2. see also parameter 4020 act2 minimum. ai2 see parameter 4016 act1 input. 4018 act1 minimum sets the minimum value for act1. scales the source signal used as the actual value act1 (defined by parameter 4016 act1 input). for parameter values 6 (comm act 1) and 7 (comm act 2) scaling is not done. the act minimum and maximum correspond the 1301 minimum ai1 and 1302 maximum ai1 settings as follows. a= normal; b = inversion (act1 minimum > act1 maximum) 0 -1000?1000% value in percent 1 = 1% 4019 act1 maximum defines the maximum value for the variable act1 if an analog input is selected as a source for act1. see parameter 4016 act1 input. the minimum ( 4018 act1 minimum) and maximum settings of act1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process pid controller. see parameter 4018 act1 minimum. 100 -1000?1000% value in percent 1 = 1% 4020 act2 minimum see parameter 4018 act1 minimum. 0 -1000?1000% see parameter 4018 .1 = 1% 4021 act2 maximum see parameter 4019 act1 maximum. 100 -1000?1000% see parameter 4019 .1 = 1% parameters ? complete descriptions index name/selection description def, fbeq par 4016 source source min. source max. 1 analog input 1 1301 minimum ai1 1302 maximum ai1 2 analog input 2 1301 minimum ai2 1302 maximum ai2 3 current 0 2 - nominal current 4 torque -2 - nominal torque 2 - nominal torque 5 power -2 - nominal power 2 - nominal power ai (%) 4019 4018 1301 1302 1301 1302 4018 4019 act1 (%) ai (%) act1 (%) a b
actual signals and parameters 219 4022 sleep selection activates the sleep function and selects the source for the activation input. see section sleep function for the process pid (pid1) control on page 122 . not sel not sel no sleep function selected 0 di1 the function is activated/deactivated through digital input di1.1 = activation, 0 = deactivation. the internal sleep criteria set by parameters 4023 pid sleep level and 4025 wake-up dev are not effective. the sleep start and stop delay parameters 4024 pid sleep delay and 4026 wake-up delay are effective. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 internal activated and deactivated automatically as defined by parameters 4023 pid sleep level and 4025 wake-up dev. 7 di1(inv) the function is activated/deactivated through inverted digital input di1. 1 = deactivation, 0 = activation. the internal sleep criteria set by parameters 4023 pid sleep level and 4025 wake-up dev are not effective. the sleep start and stop delay parameters 4024 pid sleep delay and 4026 wake-up delay are effective. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 4023 pid sleep level defines the start limit for the sleep function. if the motor speed is below a set level ( 4023 ) longer than the sleep delay ( 4024 ), the drive shifts to the sleeping mode: the motor is stopped and the control panel shows alarm message pid sleep. parameter 4022 sleep selection must be set to internal. 0 0.0?500.0 hz / 0?30000 rpm sleep start level 1 = 0.1 hz / 1rpm parameters ? complete descriptions index name/selection description def, fbeq start t < 4024 t t > 4024 t stop 4023 4026 pid reference pid output level 4025 pid process feedback
actual signals and parameters 220 4024 pid sleep delay defines the delay for the sleep start function. see parameter 4023 pid sleep level. when the motor speed falls below the sleep level, the counter starts. when the motor speed exceeds the sleep level, the counter is reset. 60 0.0?3600.0 s sleep start delay 1 = 0.1 s 4025 wake-up dev defines the wake-up deviation for the sleep function. the drive wakes up if the process actual value deviation from the pid reference value exceeds the set wake-up deviation ( 4025 ) longer than the wake-up delay ( 4026 ). wake-up level depends on parameter 4005 error value inv settings. if parameter 4005 is set 0: wake-up level = pid reference (4010) - wake-up deviation (4025). if parameter 4005 is set to 1: wake-up level = pid reference (4010) + wake-up deviation (4025) see also figures in parameter 4023 pid sleep level. 0 x?x unit and range depend on the unit and scale defined by parameters 4026 wake-up delay and 4007 unit scale. 4026 wake-up delay defines the wake-up delay for the sleep function. see parameter 4023 pid sleep level. 0.5 0.00?60.00 s wake-up delay 1 = 0.01 s 4027 pid 1 param set defines the source from which the drive reads the signal that selects between pid parameter set 1 and 2. pid parameter set 1 is defined by parameters 4001 ? 4026 . pid parameter set 2 is defined by parameters 4101 ? 4126 . set1 set 1 pid set 1 is active. 0 di1 digital input di1. 1 = pid set 2, 0 = pid set 1. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 set 2 pid set 2 is active. 7 timed func 1 timed pid set 1/2 control. timed function 1 inactive = pid set 1, timed function 1 active = pid set 2. see parameter group 36 timed functions . 8 timed func 2 see selection timed func 1. 9 timed func 3 see selection timed func 1. 10 timed func 4 see selection timed func 1. 11 di1(inv) inverted digital input di1. 0 = pid set 2, 1 = pid set 1. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 parameters ? complete descriptions index name/selection description def, fbeq 4025 pid reference 4025 t wake-up level when 4005 = 1 wake-up level when 4005 = 0
actual signals and parameters 221 41 process pid set 2 process pid (pid1) control parameter set 2. see section pid control on page 120 . 4101 gain see parameter 4001 gain. 4102 integration time see parameter 4002 integration time. 4103 derivation time see parameter 4003 derivation time. 4104 pid deriv filter see parameter 4004 pid deriv filter. 4105 error value inv see parameter 4005 error value inv. 4106 units see parameter 4006 units. 4107 unit scale see parameter 4007 unit scale. 4108 0% value see parameter 4008 0% value. 4109 100% value see parameter 4009 100% value. 4110 set point sel see parameter 4010 set point sel. 4111 internal setpnt see parameter 4011 internal setpnt. 4112 setpoint min see parameter 4012 setpoint min. 4113 setpoint max see parameter 4013 setpoint max. 4114 fbk sel see parameter 4014 fbk sel. 4115 fbk multiplier see parameter 4015 fbk multiplier. 4116 act1 input see parameter 4016 act1 input. 4117 act2 input see parameter 4017 act2 input. 4118 act1 minimum see parameter 4018 act1 minimum. 4119 act1 maximum see parameter 4018 act1 maximum. 4120 act2 minimum see parameter 4020 act2 minimum. 4121 act2 maximum see parameter 4021 act2 maximum. 4122 sleep selection see parameter 4022 sleep selection. 4123 pid sleep level see parameter 4023 pid sleep level. 4124 pid sleep delay see parameter 4024 pid sleep delay. 4125 wake-up dev see parameter 4025 wake-up dev. 4126 wake-up delay see parameter 4026 wake-up delay. 42 ext / trim pid external/trim pid (pid2) control. see section pid control on page 120 . 4201 gain see parameter 4001 gain. 4202 integration time see parameter 4002 integration time. 4203 derivation time see parameter 4003 derivation time. 4204 pid deriv filter see parameter 4004 pid deriv filter. 4205 error value inv see parameter 4005 error value inv. 4206 units see parameter 4006 units. 4207 unit scale see parameter 4007 unit scale. 4208 0% value see parameter 4008 0% value. 4209 100% value see parameter 4009 100% value. 4210 set point sel see parameter 4010 set point sel. 4211 internal setpnt see parameter 4011 internal setpnt. 4212 setpoint min see parameter 4012 setpoint min. parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 222 4213 setpoint max see parameter 4013 setpoint max. 4214 fbk sel see parameter 4014 fbk sel. 4215 fbk multiplier see parameter 4015 fbk multiplier. 4216 act1 input see parameter 4016 act1 input. 4217 act2 input see parameter 4017 act2 input. 4218 act1 minimum see parameter 4018 act1 minimum. 4219 act1 maximum see parameter 4018 act1 maximum. 4220 act2 minimum see parameter 4020 act2 minimum. 4221 act2 maximum see parameter 4021 act2 maximum. 4228 activate selects the source for the external pid function activation signal. parameter 4230 trim mode must be set to not sel. not sel not sel no external pid control activation selected 0 di1 digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 drive run activation at drive start. start (drive running) = active. 7 on activation at drive power-up. power-up (drive powered) = active. 8 timed func 1 activation by a timed function. timed function 1 active = pid control active. see parameter group 36 timed functions . 9 timed func 2 see selection timed func 1. 10 timed func 3 see selection timed func 1. 11 timed func 4 see selection timed func 1. 12 di1(inv) inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 4229 offset defines the offset for the external pid controller output. when pid controller is activated, controller output starts from the offset value. when pid controller is deactivated, controller output is reset to the offset value. parameter 4230 trim mode must be set to not sel. 0 0.0?100.0% value in percent 1 = 0.1% 4230 trim mode activates the trim function and selects between the direct and proportional trimming. with trimming it is possible to combine a corrective factor to the drive reference. see section reference trimming on page 101 . not sel not sel no trim function selected 0 proportional active. the trimming factor is proportional to the rpm/hz reference before trimming (ref1). 1 direct active. the trimming factor is relative to a fixed maximum limit used in the reference control loop (maximum speed, frequency or torque). 2 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 223 4231 trim scale defines the multiplier for the trimming function. see section reference trimming on page 101 . 0 -100.0?100.0% multiplier 1 = 0.1% 4232 correction src selects the trim reference. see section reference trimming on page 101 .pid2ref pid2ref pid2 reference selected by parameter 4210 (i.e. signal 0129 pid 2 setpnt value) 1 pid2output pid2 output i.e. signal 0127 pid 2 output value 2 4233 trim selection selects whether the trimming is used for correcting the speed or torque reference. see section reference trimming on page 101 . speed/ freq speed/freq speed reference trimming 0 torque torque reference trimming (only for ref2 (%)) 1 43 mech brk control control of a mechanical brake. see section control of a mechanical brake on page 126 . 4301 brake open dly defines the brake open delay (= the delay between the internal open brake command and the release of the motor speed control). the delay counter starts when the motor current/torque/speed has risen to the level required at brake release (parameter 4302 brake open lvl or 4304 forced open lvl) and the motor has been magnetised. simultaneously with the start of the counter, the brake function energises the relay output controlling the brake and the brake starts opening. 0.20 0.00?2.50 s delay time 1 = 0.01 s 4302 brake open lvl defines the motor starting torque/current at brake release. after start the drive current/torque is frozen to the set value, until the motor is magnetised. 100% 0.0?180.0% value in percent of the nominal torque t n (with vector control) or the nominal current i 2n (with scalar control). the control mode is selected by parameter 9904 motor ctrl mode. 1 = 0.1% 4303 brake close lvl defines the brake close speed. after stop the brake is closed when drive speed falls below the set value. 4.0% 0.0?100.0% value in percent of the nominal speed (with vector control) or the nominal frequency (with scalar control). the control mode is selected by parameter 9904 motor ctrl mode. 1 = 0.1% 4304 forced open lvl defines the speed at brake release. parameter setting overrides parameter 4302 brake open lvl setting. after start, the drive speed is frozen to the set value, until the motor is magnetised. the purpose of this parameter is to generate enough start torque to prevent the motor rotating into the wrong direction because of the motor load. 0 0.0?100% value in percent of the maximum frequency (with scalar control) or the maximum speed (with vector control). if parameter value is set to zero, the function is disabled. the control mode is selected by parameter 9904 motor ctrl mode. 1 = 0.1% 4305 brake magn delay defines motor magnetising time. after start drive current/torque/speed is frozen to the value defined by parameter 4302 brake open lvl or 4304 forced open lvl for the set time. 0 0?10000 ms magnetising time. if parameter value is set to zero, the function is disabled. 1 = 1 ms parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 224 4306 runtime freq lvl defines the brake close speed. when frequency falls below the set level during run, the brake is closed. the brake is re-opened when the requirements set by parameters 4301 ... 4305 are met. 0 0.0?100.0% value in percent of the maximum frequency (with scalar control) or the maximum speed (with vector control). if parameter value is set to zero, the function is disabled. the control mode is selected by parameter 9904 motor ctrl mode. 1 = 0.1% 50 encoder encoder connection. for more information, see mtac-01 pulse encoder interface module user?s manual [3afe68591091 (english)]. 5001 pulse nr states the number of encoder pulses per one revolution. 1024 32...16384 ppr pulse number in pulses per round (ppr) 1 = 1 5002 encoder enable enables the encoder. disable disable disabled 0 enable enabled 1 5003 encoder fault defines the operation of the drive if a failure is detected in communication between the pulse encoder and the pulse encoder interface module, or between the module and the drive. fault fault the drive trips on fault encoder err. 1 alarm the drive generates alarm encoder error. 2 5010 z pls enable enables the encoder zero (z) pulse. zero pulse is used for position reset. disable disable disabled 0 enable enabled 1 5011 position reset enables the position reset. disable disable disabled 0 enable enabled 1 51 ext comm module the parameters need to be adjusted only when a fieldbus adapter module (optional) is installed and activated by parameter 9802 comm prot sel. for more details on the parameters, refer to the manual of the fieldbus module and chapter fieldbus control with fieldbus adapter . these parameter settings will remain the same even though the macro is changed. note: in adapter module the parameter group number is 1. 5101 fba type displays the type of the connected fieldbus adapter module. not defined fieldbus module is not found, or it is not properly connected, or parameter 9802 comm prot sel setting is not ext fba. 0 profibus-dp profibus adapter module 1 canopen canopen adapter module 32 devicenet devicenet adapter module 37 5102 fb par 2 these parameters are adapter module-specific. for more information, see the module manual. note that not all of these parameters are necessarily visible. ... .... 5126 fb par 26 5127 fba par refresh validates any changed adapter module configuration parameter settings. after refreshing, the value reverts automatically to done. done refreshing done 0 refresh refreshing 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 225 52 panel comm communication settings for the control panel port on the drive 5201 station id defines the address of the drive. two units with the same address are not allowed on-line. 1 1?247 address 1 = 1 5202 baud rate defines the transfer rate of the link. 9.6 9.6 kbit/s 9.6 kbit/s 1 = 0.1 kbit/s 19.2 kbit/s 19.2 kbit/s 38.4 kbit/s 38.4 kbit/s 57.6 kbit/s 57.6 kbit/s 115.2 kbit/s 115.2 kbit/s 5203 parity defines the use of parity and stop bit(s). the same setting must be used in all on-line stations. 8 none 1 8 none 1 no parity bit, one stop bit 0 8 none 2 no parity bit, two stop bits 1 8 even 1 even parity indication bit, one stop bit 2 8 odd 1 odd parity indication bit, one stop bit 3 5204 ok messages number of valid messages received by the drive. during normal operation, this number increases constantly. 0 0?65535 number of messages 1 = 1 5205 parity errors number of characters with a parity error received from the modbus link. if the number is high, check that the parity settings of the devices connected on the bus are the same. note: high electromagnetic noise levels generate errors. 0 0?65535 number of characters 1 = 1 5206 frame errors number of characters with a framing error received by the modbus link. if the number is high, check that the communication speed settings of the devices connected on the bus are the same. note: high electromagnetic noise levels generate errors. 0 0?65535 number of characters 1 = 1 5207 buffer overruns number of characters which overflow the buffer, i.e. number of characters which exceed the maximum message length, 128 bytes. 0 0?65535 number of characters 1 = 1 5208 crc errors number of messages with an crc (cyclic redundancy check) error received by the drive. if the number is high, check crc calculation for possible errors. note: high electromagnetic noise levels generate errors. 0 0?65535 number of messages 1 = 1 53 efb protocol embedded fieldbus link settings. see chapter fieldbus control with embedded fieldbus . 5302 efb station id defines the address of the device. two units with the same address are not allowed on-line. 1 0...247 address 1 = 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 226 5303 efb baud rate defines the transfer rate of the link. 9.6 9.6 9.6 kbit/s 1 = 0.1 kbit/s 19.2 19.2 kbit/s 38.4 38.4 kbit/s 57.6 57.6 kbit/s 115.2 115.2 kbit/s 5304 efb parity defines the use of parity and stop bit(s) and the data length. the same setting must be used in all on-line stations. 8 none 1 8 none 1 no parity bit, one stop bit, 8 data bits 0 8 none 2 no parity bit, two stop bits, 8 data bits 1 8 even 1 even parity indication bit, one stop bit, 8 data bits 2 8 odd 1 odd parity indication bit, one stop bit, 8 data bits 3 5305 efb ctrl profile selects the communication profile. see section communication profiles on page 258 . abb drv lim abb drv lim abb drive limited profile 0 dcu profile dcu profile 1 abb drv full abb drives profile 2 5306 efb ok messages number of valid messages received by the drive. during normal operation, this number increases constantly. 0 0...65535 number of messages 1 = 1 5307 efb crc errors number of messages with an crc (cyclic redundancy check) error received by the drive. if the number is high, check crc calculation for possible errors. note: high electromagnetic noise levels generate errors. 0 0...65535 number of messages 1 = 1 5310 efb par 10 selects an actual value to be mapped to modbus register 40005. 0 0...65535 parameter index 1 = 1 5311 efb par 11 selects an actual value to be mapped to modbus register 40006. 0 0...65535 parameter index 1 = 1 5312 efb par 12 selects an actual value to be mapped to modbus register 40007. 0 0...65535 parameter index 1 = 1 5313 efb par 13 selects an actual value to be mapped to modbus register 40008. 0 0...65535 parameter index 1 = 1 5314 efb par 14 selects an actual value to be mapped to modbus register 40009. 0 0...65535 parameter index 1 = 1 5315 efb par 15 selects an actual value to be mapped to modbus register 40010. 0 0...65535 parameter index 1 = 1 5316 efb par 16 selects an actual value to be mapped to modbus register 40011. 0 0...65535 parameter index 1 = 1 5317 efb par 17 selects an actual value to be mapped to modbus register 40012. 0 0...65535 parameter index 1 = 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 227 5318 efb par 18 reserved 0 5319 efb par 19 abb drives profile (abb drv lim or abb drv full) control word. read only copy of the fieldbus control word. 0x0000 0x0000...0xffff (hex) control word 5320 efb par 20 abb drives profile (abb drv lim or abb drv full) status word. read only copy of the fieldbus status word. 0x0000 0x0000...0xffff (hex) status word 54 fba data in data from drive to fieldbus controller via a fieldbus adapter. see chapter fieldbus control with fieldbus adapter . note: in adapter module the parameter group number is 3. 5401 fba data in 1 selects data to be transferred from the drive to the fieldbus controller. 0not in use 1...6 control and status data words 101...9999 parameter index 5402 fba data in 2 see 5401 fba data in 1. .... ... ... 5410 fba data in 10 see 5401 fba data in 1. 55 fba data out data from fieldbus controller to drive via a fieldbus adapter. see chapter fieldbus control with fieldbus adapter . note: in adapter module the parameter group number is 2. 5501 fba data out 1 selects data to be transferred from the fieldbus controller to the drive. 0not in use 1...6 control and status data words 101...9999 drive parameter 5502 fba data out 2 see 5501 fba data out 1. ... ... ... 5510 fba data out 10 see 5501 fba data out 1. parameters ? complete descriptions index name/selection description def, fbeq 5401 setting data word 1 control word 2ref1 3ref2 4 status word 5 actual value 1 6 actual value 2 5501 setting data word 1 control word 2ref1 3ref2 4status word 5 actual value 1 6 actual value 2
actual signals and parameters 228 84 sequence prog sequence programming. see section sequence programming on page 133 . 8401 seq prog enable enables sequence programming. if sequence programming enable signal is lost, the sequence programming is stopped, sequence programming state ( 0168 seq prog state) is set to 1 and all timers and outputs (ro/to/ao) are set to zero. disabled disabled disabled 0 ext2 enabled in external control location 2 (ext2) 1 ext1 enabled in external control location 1 (ext1) 2 ext1&ext2 enabled in external control locations 1 and 2 (ext1 and ext2) 3 always enabled in external control locations 1 and 2 (ext1 and ext2) and in local control (local) 4 8402 seq prog start selects the source for the sequence programming activation signal. when sequence programming is activated, the programming starts from the previously used state. if sequence programming activation signal is lost, the sequence programming is stopped and all timers and outputs (ro/to/ao) are set to zero. sequence programming state ( 0168 seq prog state) remains unchanged. if start from the first sequence programming state is required, the sequence programming must be reset by parameter 8404 seq prog reset. if start from the first sequence programming state is always required, reset and start signal sources must be through the same digital input ( 8404 and 8402 seq prog start). note : the drive will not start if no run enable signal is received ( 1601 run enable). not sel di1(inv) sequence programming activation through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no sequence programming activation signal 0 di1 sequence programming activation through digital input di1. 1 = active, 0=inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 drive start sequence programming activation at drive start 6 timed func 1 sequence programming is activated by time function 1. see parameter group 36 timed functions . 7 timed func 2 see selection timed func 1. 8 timed func 3 see selection timed func 1. 9 timed func 4 see selection timed func 1. 10 running sequence programming is always active. 11 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 229 8403 seq prog pause selects the source for the sequence programming pause signal. when sequence programming pause is activated all timers and outputs (ro/to/ ao) are freezed. sequence programming state transition is possible only by parameter 8405 seq st force. not sel di1(inv) pause signal through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no pause signal 0 di1 pause signal through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 paused sequence programming pause enabled 6 8404 seq prog reset selects the source for the sequence programming reset signal. sequence programming state ( 0168 seq prog state) is set to the first state and all timers and outputs (ro/to/ao) are set to zero. reset is possible only when sequence programming is stopped. not sel di1(inv) reset through inverted digital input di1. 0 = active, 1 = inactive. -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no reset signal 0 di1 reset through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 reset reset. after reset parameter value is automatically set to not sel. 6 8405 seq st force forces the sequence programming to a selected state. note: state is changed only when sequence programming is paused by parameter 8403 seq prog pause and this parameter is set to the selected state. state1 state 1 state is forced to state 1. 1 state 2 state is forced to state 2. 2 state 3 state is forced to state 3. 3 state 4 state is forced to state 4. 4 state 5 state is forced to state 5. 5 state 6 state is forced to state 6. 6 state 7 state is forced to state 7. 7 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 230 state 8 state is forced to state 8. 8 8406 seq logic val 1 defines the source for the logic value 1. logic value 1 is compared to logic value 2 as defined by parameter 8407 seq logic oper 1. logic operation values are used in state transitions. see parameter 8425 st1 trig to st 2 / 8426 st1 trig to st n selection logic val. not sel di1(inv) logic value 1 through inverted digital input di1(inv) -1 di2(inv) see selection di1(inv). -2 di3(inv) see selection di1(inv). -3 di4(inv) see selection di1(inv). -4 di5(inv) see selection di1(inv). -5 not sel no logic value 0 di1 logic value 1 through digital input di1 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 suprv1 over logic value according to supervision parameters 3201 ... 3203 . see parameter group 32 supervision . 6 suprv2 over logic value according to supervision parameters 3204 ... 3206 . see parameter group 32 supervision . 7 suprv3 over logic value according to supervision parameters 3207 ... 3209 . see parameter group 32 supervision . 8 suprv1 under see selection suprv 1over. 9 suprv2 under see selection suprv 2over. 10 suprv3 under see selection suprv 3over. 11 timed func 1 logic value 1 is activated by timed function 1. see parameter group 36 timed functions . 1 = timed function active. 12 timed func 2 see selection timed func 1. 13 timed func 3 see selection timed func 1. 14 timed func 4 see selection timed func 1. 15 8407 seq logic oper 1 selects the operation between logic value 1 and 2. logic operation values are used in state transitions. see parameter 8425 st1 trig to st 2 / 8426 st1 trig to st n selection logic val. not sel not sel logic value 1 (no logic comparison) 0 and logic function: and 1 or logic function: or 2 xor logic function: xor 3 8408 seq logic val 2 see parameter 8406 seq logic val 1. not sel see parameter 8406 . 8409 seq logic oper 2 selects the operation between logic value 3 and the result of the first logic operation defined by parameter 8407 seq logic oper 1. not sel not sel logic value 2 (no logic comparison) 0 and logic function: and 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 231 or logic function: or 2 xor logic function: xor 3 8410 seq logic val 3 see parameter 8406 seq logic val 1. not sel see parameter 8406 . 8411 seq val 1 high defines the high limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai1 high 1. 0 0.0?100.0% value in percent 1 = 0.1% 8412 seq val 1 low defines the low limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai1 low 1. 0 0.0?100.0% value in percent 1 = 0.1% 8413 seq val 2 high defines the high limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai2 high 1. 0 0.0...100.0% value in percent 1 = 0.1% 8414 seq val 2 low defines the low limit for the state change when parameter 8425 st1 trig to st 2 is set to e.g. ai2 low 2. 0 0.0...100.0% value in percent 1 = 0.1% 8415 cycle cnt loc activates the cycle counter for sequence programming. example: when parameter is set to st6 to next, the cycle count ( 0171 seq cycle cntr) increases every time the state changes from state 6 to state 7. not sel not sel disabled 0 st1 to next from state 1 to state 2 1 st2 to next from state 2 to state 3 2 st3 to next from state 3 to state 4 3 st4 to next from state 4 to state 5 4 st5 to next from state 5 to state 6 5 st6 to next from state 6 to state 7 6 st7 to next from state 7 to state 8 7 st8 to next from state 8 to state 1 8 st1 to n from state 1 to state n. state n is defined by parameter 8427 st1 state n. 9 st2 to n from state 2 to state n. state n is defined by parameter 8427 st1 state n. 10 st3 to n from state 3 to state n. state n is defined by parameter 8427 st1 state n. 11 st4 to n from state 4 to state n. state n is defined by parameter 8427 st1 state n. 12 st5 to n from state 5 to state n. state n is defined by parameter 8427 st1 state n. 13 st6 to n from state 6 to state n. state n is defined by parameter 8427 st1 state n. 14 st7 to n from state 7 to state n. state n is defined by parameter 8427 st1 state n. 15 st8 to n from state 8 to state n. state n is defined by parameter 8427 st1 state n. 16 8416 cycle cnt rst selects the source for the cycle counter reset signal ( 0171 seq cycle cntr). not sel di5(inv) reset through inverted digital input di1(inv). 0 = active, 1 = inactive. -5 di4(inv) see selection di1(inv). -4 di3(inv) see selection di1(inv). -3 di2(inv) see selection di1(inv). -2 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 232 di1(inv) see selection di1(inv). -1 not sel no reset signal 0 di1 reset through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 state 1 reset during state transition to state 1. counter is reset, when the state has been reached. 6 state 2 reset during state transition to state 2. counter is reset, when the state has been reached. 7 state 3 reset during state transition to state 3. counter is reset, when the state has been reached. 8 state 4 reset during state transition to state 4. counter is reset, when the state has been reached. 9 state 5 reset during state transition to state 5. counter is reset, when the state has been reached. 10 state 6 reset during state transition to state 6. counter is reset, when the state has been reached. 11 state 7 reset during state transition to state 7. counter is reset, when the state has been reached. 12 state 8 reset during state transition to state 8. counter is reset, when the state has been reached. 13 seq prog rst reset signal source defined by parameter 8404 seq prog reset 14 8420 st1 ref sel selects the source for the sequence programming state 1 reference. parameter is used when parameter 1103 / 1106 ref1/2 select is set to seq prog / ai1+seq prog / ai2+seq prog. note: constant speeds in group 12 constant speeds overwrite the selected sequence programming reference. 0 comm 0136 comm value 2. for scaling, see fieldbus reference scaling on page 253 . -1.3 ai1/ai2 reference is calculated with the following equation: ref = ai1(%) (50% / ai2 (%)) -1.2 ai1-ai2 reference is calculated with the following equation: ref = ai1(%) + 50% - ai2(%) -1.1 ai1*ai2 reference is calculated with the following equation: ref = ai(%) (ai2(%) / 50%) -1.0 ai1+ai2 reference is calculated with the following equation: ref = ai1(%) + ai2(%) - 50% -0.9 di4u,5d digital input 4: reference increase. digital input di5: reference decrease. -0.8 di3u,4d digital input 3: reference increase. digital input di4: reference decrease. -0.7 di3u,4dr digital input 3: reference increase. digital input di4: reference decrease. -0.6 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 233 ai2 joy analog input ai2 as joystick. the minimum input signal runs the motor at the maximum reference in the reverse direction, the maximum input at the maximum reference in the forward direction. minimum and maximum references are defined by parameters 1104 ref1 min and 1105 ref1 max. see parameter 1103 ref1 select selection ai1/joyst for more information. -0.5 ai1 joy see selection ai2 joy. -0.4 ai2 analog input ai2 -0.3 ai1 analog input ai1 -0.2 keypad control panel -0.1 0.0 ?100.0% constant speed 8421 st1 commands selects the start, stop and direction for state 1. parameter 1002 ext2 commands must be set to seq prog. note: if change of direction of rotation is required, parameter 1003 direction must be set to request. drive stop drive stop drive coast or ramps to stop depending on parameter 2102 stop function setting. 0 start frw rotation of direction is fixed to forward. if the drive is not already running, it is started according to parameter 2101 start function settings. 1 start rev rotation of direction is fixed to reverse. if the drive is not already running, it is started according to parameter 2101 start function settings. 2 8422 st1 ramp selects the acceleration/deceleration ramp time for sequence programming state 1, i.e. defines the rate of the reference change. 0 -0.2/-0.1/ 0.0?1800.0 s time when value is set to -0.2 ramp pair 2 is used. ramp pair 2 is defined by parameters 2205 ? 2207 . when value is set to -0.1 ramp pair 1 is used. ramp pair 1 is defined by parameters 2202 ? 2204 . with ramp pair 1/2, parameter 2201 acc/dec 1/2 sel must be set to seq prog. see also parameters 2202 ... 2207 . 1 = 0.1 s 8423 st1 out control selects the relay, transistor and analog output control for sequence programming state 1. the relay/transistor output control must be activated by setting parameter 1401 relay output 1 / 1805 do signal to seq prog. analog output control must be activated by parameter group 15 analogue outputs . analog output control values can be monitored with signal 0170 seq prog ao val. ao=0 r=0,d=1,ao=0 relay output is de-energized (opened), transistor output is energized and analog output is cleared. -0.7 r=1,d=0,ao=0 relay output is energized (closed), transistor output is de-energized and analog output is cleared. -0.6 r=0,d=0,ao=0 relay and transistor outputs are de-energized (opened) and analog output value is set to zero. -0.5 ro=0,do=0 relay and transistor outputs are de-energized (opened) and analog output control is frozen to the previously set value. -0.4 ro=1,do=1 relay and transistor outputs are energized (closed) and analog output control is frozen to the previously set value. -0.3 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 234 do=1 transistor output is energized (closed) and relay output is de-energized. analog output control is frozen to the previously set value. -0.2 ro=1 transistor output is de-energized (opened) and relay output is energized. analog output control is frozen to the previously set value. -0.1 ao=0 analog output value is set to zero. relay and transistor outputs are frozen to the previously set value. 0.0 0.1?100.0% value written to signal 0170 seq prog ao val. value can be connected to control analog output ao by setting parameter 1501 ao1 content sel value to 170 (i.e. signal 0170 seq prog ao val). ao value is frozen to this value until it is zeroed. 8424 st1 change dly defines the delay time for state 1. when delay has elapsed, state transition is allowed. see parameters 8425 st1 trig to st 2 and 8426 st1 trig to st n. 0 0.0?6553.5 s delay time 1 = 0.1 s 8425 st1 trig to st 2 selects the source for the trigger signal, which changes the state from state 1 to state 2. note: state change to state n (8426 st1 trig to st n) has a higher priority than state change to the next state (8425 st1 trig to st 2). not sel di5(inv) trigger through inverted digital input di5. 0 = active, 1 = inactive. -5 di4(inv) see selection di5(inv). -4 di3(inv) see selection di5(inv). -3 di2(inv) see selection di5(inv). -2 di1(inv) see selection di5(inv). -1 not sel no trigger signal. if parameter 8426 st1 trig to st n setting is also not sel, the state is frozen and can be reset only with parameter 8402 seq prog start. 0 di1 trigger through digital input di1. 1 = active, 0 = inactive. 1 di2 see selection di1. 2 di3 see selection di1. 3 di4 see selection di1. 4 di5 see selection di1. 5 ai 1 low 1 state change when ai1 value < par. 8412 seq val 1 low value. 6 ai 1 high 1 state change when ai1 value > par. 8411 seq val 1 high value. 7 ai 2 low 1 state change when ai2 value < par. 8412 seq val 1 low value. 8 ai 2 high 1 state change when ai2 value > par. 8411 seq val 1 high value. 9 ai1 or 2 lo1 state change when ai1 or ai2 value < par. 8412 seq val 1 low value. 10 ai1lo1ai2hi1 state change when ai1 value < par. 8412 seq val 1 low value and ai2 value > par. 8411 seq val 1 high value. 11 ai1lo1 ordi5 state change when ai1 value < par. 8412 seq val 1 low value or when di5 is active. 12 ai2hi1 ordi5 state change when ai2 value > par. 8411 seq val 1 high value or when di5 is active. 13 ai 1 low 2 state change when ai1 value < par. 8414 seq val 2 low value. 14 ai 1 high 2 state change when ai1 value > par. 8413 seq val 2 high value. 15 ai 2 low 2 state change when ai2 value < par. 8414 seq val 2 low value. 16 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 235 ai 2 high 2 state change when ai2 value > par. 8413 seq val 2 high value. 17 ai1 or 2 lo2 state change when ai1 or ai2 value < par. 8414 seq val 2 low value. 18 ai1lo2ai2hi2 state change when ai1 value < par. 8414 seq val 2 low value and ai2 value > par. 8413 seq val 2 high value. 19 ai1lo2 ordi5 state change when ai1 value < par. 8414 seq val 2 low value or when di5 is active. 20 ai2hi2 ordi5 state change when ai2 value > par. 8413 seq val 2 high value or when di5 is active. 21 timed func 1 trigger with time function 1. see parameter group 36 timed functions .22 timed func 2 see selection timed func 1. 23 timed func 3 see selection timed func 1. 24 timed func 4 see selection timed func 1. 25 change dly state change after delay time defined by parameter 8424 st1 change dly has elapsed. 26 di1 or delay state change after di1 activation or after delay time defined by parameter 8424 st1 change dly has elapsed. 27 di2 or delay see selection di1 or delay. 28 di3 or delay see selection di1 or delay. 29 di4 or delay see selection di1 or delay. 30 di5 or delay see selection di1 or delay. 31 ai1hi1 ordly state change when ai1 value > par. 8411 seq val 1 high value or after delay time defined by parameter 8424 st1 change dly has elapsed. 32 ai2lo1 ordly state change when ai1 value < par. 8412 seq val 1 low value or after delay time defined by parameter 8424 st1 change dly has elapsed. 33 ai1hi2 ordly state change when ai1 value > par. 8413 seq val 2 high value or after delay time defined by parameter 8424 st1 change dly has elapsed. 34 ai2lo2 ordly state change when ai2 value < par. 8414 seq val 2 low value or after delay time defined by parameter 8424 st1 change dly has elapsed. 35 suprv1 over logic value according to supervision parameters 3201 ... 3203 . see parameter group 32 supervision . 36 suprv2 over logic value according to supervision parameters 3204 ... 3206 . see parameter group 32 supervision . 37 suprv3 over logic value according to supervision parameters 3207 ... 3209 . see parameter group 32 supervision . 38 suprv1 under see selection suprv 1 over. 39 suprv2 under see selection suprv 2 over. 40 suprv3 under see selection suprv 3 over. 41 spv1ovrordly state change according to supervision parameters 3201 ... 3203 or when delay time defined by parameter 8424 st1 change dly has elapsed. see parameter group 32 supervision . 42 spv2ovrordly state change according to supervision parameters 3204 ... 3206 or when delay time defined by parameter 8424 st1 change dly has elapsed. see parameter group 32 supervision . 43 spv3ovrordly state change according to supervision parameters 3207 ... 3209 or when delay time defined by parameter 8424 st1 change dly has elapsed. see parameter group 32 supervision . 44 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 236 spv1undordly see selection spv1ovrordly. 45 spv2undordly see selection spv2ovrordly. 46 spv3undordly see selection spv3undordly. 47 cntr over state change when counter value exceeds the limit defined by par. 1905 counter limit. see parameters 1904 ... 1911 . 48 cntr under state change when counter value is below the limit defined by par. 1905 counter limit. see parameters 1904 ... 1911 . 49 logic val state change according to logic operation defined by parameters 8406 ... 8410 50 enter setpnt state change when drive output frequency/speed enters the reference area (i.e the difference is less than or equal to 4% of the maximum reference). 51 at setpoint state change when drive output frequency/speed equals the reference value (= is within tolerance limits i.e the error is less than or equal to 1% of the maximum reference). 52 ai1 l1 & di5 state change when ai1 value < par. 8412 seq val 1 low value and when di5 is active. 53 ai2 l2 & di5 state change when ai1 value < par. 8414 seq val 2 low value and when di5 is active. 54 ai1 h1 & di5 state change when ai1 value > par. 8411 seq val 1 high value and when di5 is active. 55 ai2 h2 & di5 state change when ai1 value > par. 8413 seq val 2 high value and when di5 is active. 56 ai1 l1 & di4 state change when ai1 value < par. 8412 seq val 1 low value and when di4 is active. 57 ai2 l2 & di4 state change when ai1 value < par. 8414 seq val 2 low value and when di4 is active. 58 ai1 h1 & di4 state change when ai1 value > par. 8411 seq val 1 high value and when di4 is active. 59 ai2 h2 & di4 state change when ai1 value > par. 8413 seq val 2 high value and when di4 is active. 60 dly and di1 state change when delay time defined by parameter 8424 st1 change dly has elapsed and di1 is active. 61 dly and di2 state change when delay time defined by parameter 8424 st1 change dly has elapsed and di2 is active. 62 dly and di3 state change when delay time defined by parameter 8424 st1 change dly has elapsed and di3 is active. 63 dly and di4 state change when delay time defined by parameter 8424 st1 change dly has elapsed and di4 is active. 64 dly and di5 state change when delay time defined by parameter 8424 st1 change dly has elapsed and di5 is active. 65 dly & ai2 h2 state change when delay time defined by parameter 8424 st1 change dly has elapsed and ai2 value > par. 8413 seq val 2 high value. 66 dly & ai2 l2 state change when delay time defined by parameter 8424 st1 change dly has elapsed and ai2 value < par. 8414 seq val 2 low value. 67 dly & ai1 h1 state change when delay time defined by parameter 8424 st1 change dly has elapsed and ai1 value > par. 8411 seq val 1 high value. 68 dly & ai1 l1 state change when delay time defined by parameter 8424 st1 change dly has elapsed and ai1 value < par. 8412 seq val 1 low value. 69 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 237 comm val1 #0 0135 comm value 1 bit 0. 1 = state change. 70 comm val1 #1 0135 comm value 1 bit 1. 1 = state change. 71 comm val1 #2 0135 comm value 1 bit 2. 1 = state change. 72 comm val1 #3 0135 comm value 1 bit 3. 1 = state change. 73 comm val1 #4 0135 comm value 1 bit 4. 1 = state change. 74 comm val1 #5 0135 comm value 1 bit 5. 1 = state change. 75 comm val1 #6 0135 comm value 1 bit 6. 1 = state change. 76 comm val1 #7 0135 comm value 1 bit 7. 1 = state change. 77 ai2h2di4sv1o state change according to supervision parameters 3201 ... 3203 when ai2 value > par. 8413 seq val 2 high value and di4 is active. 78 ai2h2di5sv1o state change according to supervision parameters 3201 ... 3203 when ai2 value > par. 8413 seq val 2 high value and di5 is active. 79 8426 st1 trig to st n selects the source for the trigger signal, which changes the state from state 1 to state n. state n is defined with parameter 8427 st1 state n. note: state change to state n (8426 st1 trig to st n) has a higher priority than state change to the next state (8425 st1 trig to st 2). not sel see parameter 8425 st1 trig to st 2. 8427 st1 state n defines the state n. see parameter 8426 st1 trig to st n. state 1 state 1 state 1 1 state 2 state 2 2 state 3 state 3 3 state 4 state 4 4 state 5 state 5 5 state 6 state 6 6 state 7 state 7 7 state 8 state 8 8 8430 st2 ref sel see parameters 8420 ? 8427 . ? 8497 st8 state n 98 options external serial communication activation 9802 comm prot sel activates the external serial communication and selects the interface. not sel not sel no communication 0 std modbus embedded fieldbus. interface: rs-485 provided by optional fmba-01 modbus adapter connected to drive terminal x3. see chapter fieldbus control with embedded fieldbus . 1 ext fba the drive communicates via a fieldbus adapter module connected to drive terminal x3. see also parameter group 51 ext comm module . see chapter fieldbus control with fieldbus adapter . 4 modbus rs232 embedded fieldbus. interface: rs-232 (i.e. control panel connector). see chapter fieldbus control with embedded fieldbus . 10 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 238 99 start-up data language selection. definition of motor set-up data. 9901 language selects the display language. note: with acs-cp-d assistant control panel, the following languages are available: english (0), chinese (1) and korean (2). english english british english. available with acs-cp-a and acs-cp-l assistant control panels. 0 english (am) american english. available with acs-cp-a assistant control panel. 1 deutsch german. available with acs-cp-a and acs-cp-l assistant control panels. 2 italiano italian. available with acs-cp-a assistant control panel. 3 espa?ol spanish. available with acs-cp-a assistant control panel. 4 portugues portuguese. available with acs-cp-a assistant control panel. 5 nederlands dutch. available with acs-cp-a assistant control panel. 6 francais french. available with acs-cp-a assistant control panel. 7 dansk danish. available with acs-cp-a assistant control panel. 8 suomi finnish. available with acs-cp-a assistant control panel. 9 svenska swedish. available with acs-cp-a assistant control panel. 10 russki russian. available with acs-cp-l assistant control panel. 11 polski polish. available with acs-cp-l assistant control panel. 12 trk?e turkish. available with acs-cp-l assistant control panel. 13 czech czech. available with acs-cp-l assistant control panel. 14 magyar hungarian. available with acs-cp-l assistant control panel. note: this selection will be added later. 9902 applic macro selects the application macro. see chapter application macros . abb standard abb standard standard macro for constant speed applications 1 3-wire 3-wire macro for constant speed applications 2 alternate alternate macro for start forward and start reverse applications 3 motor pot motor potentiometer macro for digital signal speed control applications 4 hand/auto hand/auto macro to be used when two control devices are connected to the drive: - device 1 communicates through the interface defined by external control location ext1. - device 2 communicates through the interface defined by external control location ext2. ext1 or ext2 is active at a time. switching between ext1/2 through digital input. 5 pid control pid control. for application in which the drive controls a process value. e.g. pressure control by the drive running the pressure boost pump. measured pressure and the pressure reference are connected to the drive. 6 torque ctrl torque control macro 8 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 239 load fd set flashdrop parameter values as defined by the flashdrop file. parameter view is selected by parameter 1611 parameter view. flashdrop is an optional device for fast copying of parameters to unpowered drives. flashdrop allows easy customisation of the parameter list, e.g. selected parameters can be hidden. for more information, see mfdt-01 flashdrop user?s manual [3afe68591074 (english)]. 31 user s1 load user 1 macro loaded into use. before loading, check that the saved parameter settings and the motor model are suitable for the application. 0 user s1 save save user 1 macro. stores the current parameter settings and the motor model. -1 user s2 load user 2 macro loaded into use. before loading, check that the saved parameter settings and the motor model are suitable for the application. -2 user s2 save save user 2 macro. stores the current parameter settings and the motor model. -3 user s3 load user 3 macro loaded into use. before loading, check that the saved parameter settings and the motor model are suitable for the application. -4 user s3 save save user 3 macro. stores the current parameter settings and the motor model. -5 9904 motor ctrl mode selects the motor control mode. scalar: freq vector:speed sensorless vector control mode. reference 1 = speed reference in rpm. reference 2 = speed reference in percent. 100% is the absolute maximum speed, equal to the value of parameter 2002 maximum speed (or 2001 minimum speed if the absolute value of the minimum speed is greater than the maximum speed value). 1 vector:torq vector control mode. reference 1 = speed reference in rpm. reference 2 = torque reference in percent. 100% equals nominal torque. 2 scalar:freq scalar control mode. reference 1 = frequency reference in hz. reference 2 = frequency reference in percent. 100% is the absolute maximum frequency, equal to the value of parameter 2008 maximum frequency (or 2007 minimum frequency if the absolute value of the minimum speed is greater than the maximum speed value). 3 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 240 9905 motor nom volt defines the nominal motor voltage. must be equal to the value on the motor rating plate. the drive cannot supply the motor with a voltage greater than the input power voltage. warning! never connect a motor to a drive which is connected to power line with voltage level higher than the rated motor voltage. 230 v (200 v units) 400 v (400 v units, eur) 460 v (400 v units, us) 115?345 v (200 v units) 200?600 v (400 v units, eur) 230?690 v (400 v units, us) voltage. note: the stress on the motor insulations is always dependent on the drive supply voltage. this also applies to the case where the motor voltage rating is lower than the rating of the drive and the supply of the drive. 1 = 1 v 9906 motor nom curr defines the nominal motor current. must be equal to the value on the motor rating plate. i 2n 0.2?2.0 i 2n current 1 = 0.1 a 9907 motor nom freq defines the nominal motor frequency, i.e the frequency at which the output voltage equals the motor nominal voltage: field weakening point = nom. frequency supply voltage / mot nom. voltage eur: 50 / us: 60 10.0?500.0 hz frequency 1 = 0.1 hz 9908 motor nom speed defines the nominal motor speed. must be equal to the value on the motor rating plate. type dependent 50?30000 rpm speed 1 = 1 rpm 9909 motor nom power defines the nominal motor power. must equal the value on the motor rating plate. p n 0.2?3.0 p n kw power 1 = 0.1 kw/hp 9910 id run this parameter controls a self-calibration process called the motor id run. during this process, the drive operates the motor and makes measurements in order to identify motor characteristics and create a model used for internal calculations. off/ idmagn off/idmagn the motor id run process is not run. identification magnetization is performed, depending on parameter 9904 and 2101 settings. in identification magnetization, the motor model is calculated at first start by magnetizing the motor for 10 to 15 s at zero speed (motor not rotating). the model is recalculated always at start after motor parameter changes. - parameter 9904 = 1 (vector:speed) or 2 (vector:torq): identification magnetization is performed. - parameter 9904 = 3 (scalar:freq) and parameter 2101 = 3 (scalar flyst) or 5 (fly + boost): identification magnetization is performed. - parameter 9904 = 3 (scalar:freq) and parameter 2101 has other value than 3 (scalar flyst) or 5 (fly + boost): identification magnetization is not performed. 0 parameters ? complete descriptions index name/selection description def, fbeq output voltage output frequency 9907 9905
actual signals and parameters 241 on id run. guarantees the best possible control accuracy. the id run takes about one minute. an id run is especially effective when: - vector control mode is used [parameter 9904 = 1 (vector:speed) or 2 (vector:torq)], and - operation point is near zero speed and/or - operation requires a torque range above the motor nominal torque, over a wide speed range, and without any measured speed feedback (i.e without a pulse encoder). note: the motor must be de-coupled from the driven equipment. note: check the direction of rotation of the motor before starting the id run. during the run, the motor will rotate in the forward direction. note: if motor parameters are changed after id run, repeat the id run. warning! the motor will run at up to approximately 50?80% of the nominal speed during the id run. ensure that it is safe to run the motor before performing the id run! 1 9912 motor nom torque calculated motor nominal torque in nm (calculation is based on parameter 9909 motor nom power and 9908 motor nom speed values). 0 - read-only 1 = 0.1 nm 9913 motor pole pairs calculated motor pole pair number (calculation is based on parameter 9907 motor nom freq and 9908 motor nom speed values). 0 - read-only 1 = 1 parameters ? complete descriptions index name/selection description def, fbeq
actual signals and parameters 242
fieldbus control with embedded fieldbus 243 fieldbus control with embedded fieldbus what this chapter contains the chapter describes how the drive can be controlled by external devices over a communication network using embedded fieldbus. system overview the drive can be connected to an external control system via a fieldbus adapter or embedded fieldbus. for fieldbus adapter control, see chapter fieldbus control with fieldbus adapter . the embedded fieldbus supports modbus rtu protocol. modbus is a serial, asynchronous protocol. transaction is half-duplex. embedded fieldbus connection is either rs-232 (control panel connector x2) or rs-485 (terminal x1 of the optional fmba modbus adapter connected to drive terminal x3). the maximum length of the communication cable with rs-232 is restricted to 3 meters. for more information on the fmba modbus adapter module, see fmba-01 modbus adapter module user?s manual [3afe68586704 (english)]. rs-232 is designed for a point-to-point application (a single master controlling one slave). rs-485 is designed for a multipoint application (a single master controlling one or more slaves).
fieldbus control with embedded fieldbus 244 the drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources, e.g. digital and analog inputs. fieldbus other devices fieldbus controller control word (cw) references data flow status word (sw) actual values parameter r/w requests/responses acs350 process i/o (cyclic) service messages (acyclic) rs-232* panel connector *embedded fieldbus (modbus) connection is either rs-232 or rs-485. x3 x1 rs-485* fmba modbus adapter
fieldbus control with embedded fieldbus 245 setting up communication through the embedded modbus before configuring the drive for fieldbus control, the fmba modbus adapter (if used) must be mechanically and electrically installed according to the instructions given on page 28 in chapter mechanical installation , and the module manual. the communication through the fieldbus link is initialised by setting parameter 9802 comm prot sel to std modbus or modbus rs232. the communication parameters in group 53 efb protocol must also be adjusted. see the table below. after the configuration parameters in group 53 efb protocol have been set, the drive control parameters on page 246 must be checked and adjusted when necessary. the new settings will take effect when the drive is next powered up, or when parameter 5302 efb station id setting is cleared and reset. parameter alternative settings setting for fieldbus control function/information communication initialisation 9802 comm prot sel not sel std modbus ext fba modbus rs232 std modbus (with rs-485) modbus rs232 (with rs-232) initialises embedded fieldbus communication. adapter module configuration 5302 efb station id 0...65535 any defines the station id address of the rs-232/485 link. no two stations on line may have the same address. 5303 efb baud rate 1.2 kbit/s 2.4 kbit/s 4.8 kbit/s 9.6 kbit/s 19.2 kbit/s 38.4 kbit/s 57.6 kbit/s 76.8 kbit/s defines the communication speed of the rs-232/ 485 link. 5304 efb parity 8 none 1 8 none 2 8 even 1 8 odd 1 selects the parity setting. the same settings must be used in all on-line stations. 5305 efb ctrl profile abb drv lim dcu profile abb drv full any selects the communication profile used by the drive. see section communication profiles on page 258 . 5310 ... 5317 efb par 10...17 0...65535 any selects an actual value to be mapped to modbus register 400xx.
fieldbus control with embedded fieldbus 246 drive control parameters after the modbus communication has been set up, the drive control parameters listed in the table below should be checked and adjusted when necessary. the setting for fieldbus control column gives the value to use when the modbus interface is the desired source or destination for that particular signal. the function/ information column gives a description of the parameter. parameter setting for fieldbus control function/information modbus register address control command source selection abb drv dcu 1001 ext1 commands comm enables 0301 fb cmd word 1 bits 0...1 (start/ stop) when ext1 is selected as the active control location. 40031 bits 0...1 1002 ext2 commands comm enables 0301 fb cmd word 1 bits 0...1 (start/ stop) when ext2 is selected as the active control location. 40031 bits 0...1 1003 direction forward reverse request enables rotation direction control as defined by parameters 1001 and 1002 . the direction control is explained in section reference handling . on page 254 . 40031 bit 2 1010 jogging sel comm enables jogging 1 or 2 activation through 0302 fb cmd word 2 bits 20 and 21. 40032 bits 20 and 21 1102 ext1/ ext2 sel comm enables ext1/ext2 selection through 0301 fb cmd word 1 bit 5 (with abb drives profile 5319 efb par 19 bit 11). 40001 bit 11 40031 bit 5 1103 ref1 select comm comm+ai1 comm*ai1 fieldbus reference ref1 is used when ext1 is selected as the active control location. see section fieldbus references on page 249 for information on the alternative settings. 40002 for ref1 1106 ref2 select comm comm+ai1 comm*ai1 fieldbus reference ref2 is used when ext2 is selected as the active control location. see section fieldbus references on page 249 for information on the alternative settings. 40003 for ref2 output signal source selection abb drv dcu 1401 relay output 1 comm comm(-1) enables relay output ro control by signal 0134 comm ro word. 40134 for signal 0134 1501 ao1 content sel 135 directs the contents of fieldbus reference 0135 comm value 1 to analog output ao. 40135 for signal 0135 system control inputs abb drv dcu 1601 run enable comm enables the control of the inverted run enable signal (run disable) through 0301 fb cmd word 1 bit 6 (with abb drives profile 5319 efb par 19 bit 3). 40001 bit 3 40031 bit 6 1604 fault reset sel comm enables fault reset through fieldbus 0301 fb cmd word 1 bit 4 (with abb drives profile 5319 efb par 19 bit 7). 40001 bit 7 40031 bit 4 1606 local lock comm local control mode lock signal through 0301 fb cmd word 1 bit 14 - 40031 bit 14 1607 param save done; save saves parameter value changes (including those made through fieldbus control) to permanent memory. 41607
fieldbus control with embedded fieldbus 247 1608 start enable 1 comm inverted start enable 1 (start disable) through 0302 fb cmd word 2 bit 18 - 40032 bit 18 1609 start enable 2 comm inverted start enable 2 (start disable) through 0302 fb cmd word 2 bit 19 - 40032 bit 19 limits abb drv dcu 2013 min torque sel comm minimum torque limit 1/2 selection through 0301 fb cmd word 1 bit 15 - 40031 bit 15 2014 max torque sel comm maximum torque limit 1/2 selection through 0301 fb cmd word 1 bit 15 - 40031 bit 15 2201 acc/ dec 1/2 sel comm acc/dec ramp pair selection through 0301 fb cmd word 1 bit 10 - 40031 bit 10 2209 ramp input 0 comm ramp input to zero through 0301 fb cmd word 1 bit 13 (with abb drives profile 5319 efb par 19 bit 6) 40001 bit 6 40031 bit 13 communication fault functions abb drv dcu 3018 comm fault func not sel fault const sp 7 last speed determines drive action in case fieldbus communication is lost. 43018 3019 comm fault time 0.1?60.0 s defines the time between communication loss detection and the action selected with parameter 3018 comm fault func. 43019 pid controller reference signal source selection abb drv dcu 4010 / 4110 / 4210 set point sel comm comm+ai1 comm*ai1 pid control reference (ref2) 40003 for ref2 parameter setting for fieldbus control function/information modbus register address
fieldbus control with embedded fieldbus 248 the fieldbus control interface the communication between a fieldbus system and the drive consists of 16-bit input and output data words (with abb drives profile) and 32-bit input and output words (with dcu profile). the control word and the status word the control word (cw) is the principal means of controlling the drive from a fieldbus system. the control word is sent by the fieldbus controller to the drive. the drive switches between its states according to the bit-coded instructions of the control word. the status word (sw) is a word containing status information, sent by the drive to the fieldbus controller. references references (ref) are 16-bit signed integers. a negative reference (e.g. reverse direction of rotation) is formed by calculating the two?s complement from the corresponding positive reference value. the contents of each reference word can be used as speed, frequency, torque or process reference. actual values actual values (act) are 16-bit words containing selected values of the drive.
fieldbus control with embedded fieldbus 249 fieldbus references reference selection and correction fieldbus reference (called comm in signal selection contexts) is selected by setting a reference selection parameter ? 1103 or 1106 ? to comm, comm+ai1 or comm*ai1. when 1103 ref1 select or 1106 ref2 select is set to comm, the fieldbus reference is forwarded as such without correction. when parameter 1103 or 1106 is set to comm+ai1 or comm*ai1, the fieldbus reference is corrected using analog input ai1 as shown in the following examples. reference correction examples for abb drives profile setting when comm > 0 when comm < 0 comm+ai1 comm(%) (max-min) + min + (ai(%) -50%) (max-min) comm(%) (max-min) - min + (ai(%) -50%) (max-min) maximum limit is defined by parameter 1105 ref1 max / 1108 ref2 max. minimum limit is defined by parameter 1104 ref1 min / 1107 ref2 min. 50% 1500 rpm 750 rpm 100% comm ai = 50% ai = 100% ai = 0% 0% ref (%) min limit corrected reference 0 rpm max limit -50% -1500 rpm -7500 rpm -100% ai = 50% ai = 0% ai = 100% 0% comm ref (%) max limit min limit corrected reference 0 rpm 50% 1500 rpm 750 rpm 100% ai = 50% ai = 100% ai = 0% 0% 1200 rpm 300 rpm comm ref (%) max limit min limit 0 rpm corrected reference -50% -1500 rpm -750 rpm -100% ai = 50% ai = 0% ai = 100% 0% -1200 rpm -300 rpm comm ref (%) max limit min limit 0 rpm corrected reference
fieldbus control with embedded fieldbus 250 comm*ai1 comm(%) (ai(%) / 50%) (max-min) + min comm(%) (ai(%) / 50%) (max-min) - min maximum limit is defined by parameter 1105 ref1 max / 1108 ref2 max. minimum limit is defined by parameter 1104 ref1 min / 1107 ref2 min. setting when comm > 0 when comm < 0 0% 50% 1500 rpm 750 rpm 100% ai = 50% ai = 100% ai = 0% comm ref (%) corrected reference max limit min limit 0 rpm 0% -50% -1500 rpm -750 rpm -100% ai = 50% ai = 0% ai = 100% comm ref (%) corrected reference 0 rpm max limit min limit 0% 50% 1500 rpm 750 rpm 100% ai = 50% ai = 100% ai = 0% 1200 rpm 300 rpm comm ref (%) corrected reference max limit min limit 0 rpm 0% -50% -1500 rpm -750 rpm -100% ai = 50% ai = 0% ai = 100% -300 rpm -1200 rpm comm ref (%) corrected reference min limit max limit 0 rpm
fieldbus control with embedded fieldbus 251 reference correction examples for dcu profile with dcu profile the fieldbus reference type can be hz, rpm or percent. in the following examples the reference is in rpm. setting when comm > 0 rpm when comm < 0 rpm comm+ai1 comm/1000 + (ai(%) -50%) (max-min) comm/1000+ (ai(%) -50%) (max-min) maximum limit is defined by parameter 1105 ref1 max / 1108 ref2 max. minimum limit is defined by parameter 1104 ref1 min / 1107 ref2 min. 750000 1500 rpm 750 rpm 150000 comm ai = 50% ai = 100% ai = 0% 0 ref min limit corrected reference 0 rpm max limit -750000 -1500 rpm -750 rpm -150000 ai = 50% ai = 0% ai = 100% 0 comm ref max limit min limit corrected reference 0 rpm 750000 1500 rpm 750 rpm 150000 ai = 50% ai = 100% ai = 0% 0 1200 rpm 300 rpm comm ref max limit min limit 0 rpm corrected reference -750000 -1500 rpm -750 rpm -150000 ai = 50% ai = 0% ai = 100% 0 -1200 rpm -300 rpm comm ref max limit min limit 0 rpm corrected reference
fieldbus control with embedded fieldbus 252 comm*ai1 (comm/1000) (ai(%) / 50%) (comm(%)/1000) (ai(%) / 50%) maximum limit is defined by parameter 1105 ref1 max / 1108 ref2 max. minimum limit is defined by parameter 1104 ref1 min / 1107 ref2 min. setting when comm > 0 rpm when comm < 0 rpm 750000 1500 rpm 750 rpm 150000 comm ai = 50% ai = 100% ai = 0% 0 ref min limit corrected reference max limit 0 rpm -750000 -1500 rpm -750 rpm -150000 ai = 50% ai = 0% ai = 100% 0 comm ref max limit min limit corrected reference 0 rpm 750000 1500 rpm 750 rpm 150000 ai = 50% ai = 100% ai = 0% 0 1200 rpm 300 rpm comm ref max limit min limit 0 rpm corrected reference -750000 -1500 rpm -750 rpm -150000 ai = 50% ai = 0% ai = 100% 0 -1200 rpm -300 rpm comm ref max limit min limit 0 rpm corrected reference
fieldbus control with embedded fieldbus 253 fieldbus reference scaling fieldbus references ref1 and ref2 are scaled as shown in the following tables. note: any correction of the reference (see section reference selection and correction on page 253 ) is applied before scaling. fieldbus scaling for abb drives profile note: the settings of parameters 1104 ref1 min and 1107 ref2 min have no effect on the reference scaling. fieldbus scaling for dcu profile note: the settings of parameters 1104 ref1 min and 1107 ref2 min have no effect on the reference scaling. reference range reference type scaling remarks ref1 -32767 ? +32767 speed or frequency -20000 = - (par. 1105) 0 = 0 +20000 = (par. 1105) (20000 corresponds to 100%) final reference limited by 1104 / 1105 . actual motor speed limited by 2001 / 2002 (speed) or 2007 / 2008 (frequency). ref2 -32767 ? +32767 speed or frequency -10000 = - (par. 1108) 0 = 0 +10000 = (par. 1108) (10000 corresponds to 100%) final reference limited by 1107 / 1108 . actual motor speed limited by 2001 / 2002 (speed) or 2007 / 2008 (frequency). torque -10000 = - (par. 1108) 0 = 0 +10000 = (par. 1108) (10000 corresponds to 100%) final reference limited by 2015 / 2017 (torque1) or 2016 / 2018 (torque2). pid reference -10000 = - (par. 1108) 0 = 0 +10000 = (par. 1108) (10000 corresponds to 100%) final reference limited by 4012 / 4013 (pid set1) or 4112 / 4113 (pid set2). reference range reference type scaling remarks ref1 -214783648 ? +214783647 speed or frequency 1000 = 1 rpm / 1 hz final reference limited by 1104 / 1105 . actual motor speed limited by 2001 / 2002 (speed) or 2007 / 2008 (frequency). ref2 -214783648 ? +214783647 speed or frequency 1000 = 1% final reference limited by 1107 / 1108 . actual motor speed limited by 2001 / 2002 (speed) or 2007 / 2008 (frequency). torque 1000 = 1% final reference limited by 2015 / 2017 (torque1) or 2016 / 2018 (torque2). pid reference 1000 = 1% final reference limited by 4012 / 4013 (pid set1) or 4112 / 4113 (pid set2).
fieldbus control with embedded fieldbus 254 reference handling the control of rotation direction is configured for each control location (ext1 and ext2) using the parameters in group 10 start/stop/dir . fieldbus references are bipolar, i.e. they can be negative or positive. the following diagrams illustrate how group 10 parameters and the sign of the fieldbus reference interact to produce the reference ref1/ref2. actual value scaling the scaling of the integers sent to the master as actual values depend on the selected function. see chapter actual signals and parameters . direction determined by the sign of comm direction determined by digital command, e.g. digital input, control panel par. 10.03 direction = forward par. 10.03 direction = reverse par. 10.03 direction = request fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% fieldbus -163% max.ref. ?[max.ref.] -100% 100% ref. 1/2 resultant ref1/2 163% direction command: forward direction command: reverse
fieldbus control with embedded fieldbus 255 modbus mapping the following modbus function codes are supported by the drive. register mapping the drive parameters, control/status word, references and actual values are mapped to the area 4xxxx so that: ? 40001?40099 are reserved for drive control/status, reference and actual values. ? 40101?49999 are reserved for drive parameters 0101?9999. (e.g. 40102 is parameter 0102). in this mapping, the thousands and hundreds correspond to the group number, while the tens and ones correspond to the parameter number within a group. the register addresses that do not correspond with drive parameters are invalid. if there is an attempt to read or write invalid addresses, the modbus interface returns an exception code to the controller. see exception codes on page 257 . function code hex (dec) additional information read multiple holding registers 03 (03) reads the contents of registers in a slave device. parameter sets, control, status and reference values are mapped as holding registers. write single holding register 06 (06) writes to a single register in a slave device. parameter sets, control, status and reference values are mapped as holding registers. diagnostics 08 (08) provides a series of tests for checking the communication between the master and the slave devices, or for checking various internal error conditions within the slave. the following subcodes are supported: 00 return query data: the data passed in the request data field is to be returned in the response. the entire response message should be identical to the request. 01 restart communications option: the slave device serial line port must be initialized and restarted, and all of its communication event counters cleared. if the port is currently in listen only mode, no response is returned. if the port is not currently in listen only mode, a normal response is returned before the restart. 04 force listen only mode: forces the addressed slave device to listen only mode. this isolates it from the other devices on the network, allowing them to continue communicating without interruption from the addressed remote device. no response is returned. the only function that will be processed after this mode is entered is the restart communications option function (subcode 01). write multiple holding registers 10 (16) writes to the registers (1 to approximately 120 registers) in a slave device. parameter sets, control, status and reference values are mapped as holding registers. read/write multiple holding registers 17 (23) performs a combination of one read operation and one write operation (function codes 03 and 10) in a single modbus transaction. the write operation is performed before the read operation.
fieldbus control with embedded fieldbus 256 the following table gives information on the contents of the modbus addresses 40001...40012 and 40031...40034. note: parameter writes through standard modbus are always volatile i.e. modified values are not automatically stored to permanent memory. use parameter 1607 param save to save all changed values. modbus register access information 40001 control word r/w control word. supported only by abb drives profile, i.e. when 5305 efb ctrl profile setting is abb drv lim or abb drv full. parameter 5319 efb par 19 shows a copy of the control word in hexadecimal format. 40002 reference 1 r/w external reference ref1. see section fieldbus references on page 249 . 40003 reference 2 r/w external reference ref2. see section fieldbus references on page 249 . 40004 status word r status word. supported only by abb drives profile, when 5305 efb ctrl profile setting is abb drv lim or abb drv full. parameter 5320 efb par 20 shows a copy of the control word in hexadecimal format. 40005 ... 40012 actual 1...8 r actual value 1...8. use parameter 5310 ... 5317 to selects an actual value to be mapped to modbus register 40005...40012. 40031 control word lsw r/w 0301 fb cmd word 1, i.e. the least significant word of the dcu profile 32-bit control word. supported only by dcu profile, i.e. when 5305 efb ctrl profile setting is dcu profile. 40032 control word msw r/w 0302 fb cmd word 2, i.e. the most significant word of the dcu profile 32-bit control word. supported only by dcu profile, i.e. when 5305 efb ctrl profile setting is dcu profile. 40033 status word lsw r 0303 fb sts word 1, i.e. the least significant word of the dcu profile 32-bit status word. supported only by dcu profile, i.e. when 5305 efb ctrl profile setting is dcu profile. 40034 acs350 status word msw r 0304 fb sts word 2, i.e. the most significant word of the dcu profile 32-bit status word. supported only by dcu profile, i.e. when 5305 efb ctrl profile setting is dcu profile.
fieldbus control with embedded fieldbus 257 function codes supported function codes for the holding 4xxxx register are: note: in the modbus data message, register 4xxxx is addressed as xxxx -1. for example register 40002 is addressed as 0001. exception codes exception codes are serial communication responses from the drive. the drive supports the standard modbus exception codes listed in the following table. drive parameter 5318 efb par 18 holds the most recent exception code. code hex (dec) function name additional information 03 (03) read 4x register reads the binary contents of registers (4x references) in a slave device. 06 (06) preset single 4x register presets a value into a single register (4x reference). when broadcast, the function presets the same register reference in all attached slaves. 10 (16) preset multiple 4x registers presets values into a sequence of registers (4x references). when broadcast, the function presets the same register references in all attached slaves. 17 (23) read/write 4x registers performs a combination of one read operation and one write operation (function codes 03 and 10) in a single modbus transaction. write operation is performed before the read operation. code name description 01 illegal function unsupported command 02 illegal data address address does not exist or is read/write protected. 03 illegal data value incorrect value for the drive: ? value is outside minimum or maximum limits. ? parameter is read-only. ? message is too long. ? parameter write is not allowed when start is active. ? parameter write is not allowed when factory macro is selected.
fieldbus control with embedded fieldbus 258 communication profiles the embedded fieldbus supports three communication profiles: ? dcu communication profile ? abb drives limited communication profile ? abb drives full communication profile. the dcu profile extends the control and status interface to 32 bits, and is the internal interface between the main drive application and the embedded fieldbus environment. the abb drives limited is based on the profibus interface. abb drives full profile supports two control word bits not supported by the abb drv lim implementation. abb drives communication profile two implementations of the abb drives communication profile are available: abb drives full and abb drives limited. the abb drives communication profile is active when parameter 5305 efb ctrl profile is set to abb drv full or abb drv lim. the control word and status word for the profile are described below. the abb drives communication profiles can be used through both ext1 and ext2. the control word commands are in effect when parameter 1001 ext1 commands or 1002 ext2 commands (whichever control location is active) is set to comm. drive data conversion dcu profile actual values selected by par. 5310...5317 dcu profile dcu profile actual values selected by par. 5310...5317 modbus network embedded fieldbus rs-232/485 control/status word data conversion for ref1/2 abb drv full / limited dcu profile abb drives profile
fieldbus control with embedded fieldbus 259 the following table and the state diagram later in this section describe the control word content for the abb drives profile. the upper case boldface text refers to the states shown in the following block diagram abb drives profile control word (parameter 5319) bit name value comments 0 off1 control 1 enter ready to operate. 0 stop along currently active deceleration ramp ( 2203 / 2206 ). enter off1 active; proceed to ready to switch on unless other interlocks (off2, off3) are active. 1 off2 control 1 continue operation (off2 inactive). 0 emergency off, drive coast to stop. enter off2 active ; proceed to switch-on inhibited . 2 off3 control 1 continue operation (off3 inactive). 0 emergency stop, drive stops within time defined by par. 2208 . enter off3 active ; proceed to switch-on inhibited . warning: ensure motor and driven machine can be stopped using this stop mode. 3 inhibit operation 1 enter operation enabled. ( note: the run enable signal must be active; see parameter 1601 . if par. 1601 is set to comm, this bit also activates the run enable signal.) 0 inhibit operation. enter operation inhibited . 4 note: bit 4 is supported only by abb drv full profile! ramp_out_ zero (abb drv full) 1 enter ramp function generator: output enabled . 0 force ramp function generator output to zero. drive ramps to stop (current and dc voltage limits in force). 5 ramp_hold 1 enable ramp function. enter ramp function generator: accelerator enabled . 0 halt ramping (ramp function generator output held). 6 ramp_in_ zero 1 normal operation. enter operating . 0 force ramp function generator input to zero. 7 reset 0=>1 fault reset if an active fault exists. enter switch-on inhibited . effective if par. 1604 is set to comm. 0 continue normal operation. 8?9 not in use 10 note: bit 10 is supported only by abb drv full profile! remote_cmd (abb drv full) 1 fieldbus control enabled. 0 control word 0 or reference 0: retain last control word and reference. control word = 0 and reference = 0: fieldbus control enabled. reference and deceleration/acceleration ramp are locked. 11 ext ctrl loc 1 select external control location ext2. effective if par. 1102 is set to comm. 0 select external control location ext1. effective if par. 1102 is set to comm. 12?15 reserved = /= /
fieldbus control with embedded fieldbus 260 the following table and the state diagram later in this section describe the status word content for the abb drives profile. the upper case boldface text refers to the states shown in the following block diagram abb drives profile (efb) status word (par. 5320) bit name value state/description (correspond to states/boxes in the state diagram) 0 rdy_on 1 ready to switch on 0 not ready to switch on 1 rdy_run 1 ready to operate 0 off1 active 2 rdy_ref 1 operation enabled 0 operation inhibited 3 tripped 0?1 fault . see chapter fault tracing . 0no fault 4 off_2_sta 1 off2 inactive 0 off2 active 5 off_3_sta 1 off3 inactive 0 off3 active 6 swc_on_inhib 1 switch-on inhibited 0 switch-on inhibit not active 7 alarm 1 alarm. see chapter fault tracing . 0 no alarm 8 at_setpoint 1 operating . actual value equals reference value (= is within tolerance limits, i.e in speed control the speed error is less than or equal to 4/1%* of the nominal motor speed). * asymmetric hysteresis: 4% when speed enters the reference area, 1% when speed exits the reference area. 0 actual value differs from reference value (= is outside tolerance limits). 9 remote 1 drive control location: remote (ext1 or ext2) 0 drive control location: local 10 above_limit 1 supervised parameter value exceeds the supervision high limit. bit value is 1 until the supervised parameter value falls below the supervision low limit. see parameter group 32 supervision . 0 supervised parameter value falls below the supervision low limit. bit value is 0 until the supervised parameter value exceeds the supervision high limit. see parameter group 32 supervision . 11 ext ctrl loc 1 external control location ext2 selected 0 external control location ext1 selected 12 ext run enable 1 external run enable signal received 0 no external run enable received 13? 15 reserved
fieldbus control with embedded fieldbus 261 the state diagram below describes the start-stop function of control word (cw) and status word (sw) bits for the abb drives profile. (cw xxxx x1*xx xxxx x110) input power off power on (cw bit0=0) (sw bit6=1) (sw bit0=0) from any state n(f)=0 / i=0 off1 (cw bit0=0) acd (cw bit3 =0) (sw bit2 =0) (sw bit0=1) (cw= xxxx x1*xx xxxx x111 ) (sw bit1=1) (cw bit3=1 and (cw bit4=0)* n(f)=0 / i=0 from any state switch-on inhibited not ready to switch on operation inhibited ready to switch on ready to operate rfg output enabled* c* d* from any state emergency off off2 (cw bit 1=0) (sw bit 4=0) off2 active from any state fault (sw bit3=1) fault (cw bit7=1)** (sw bit5=0) emergency stop off3 (cw bit2=0) sw bit12=1) rfg: accelerator enabled (cw=xxxx x1*xx xx11* 1111 (cw bit6=0) c (cw=xxxx x1*xx x111* 1111 (sw bit8=1) d b* d operating off3 active state state change path described in example cw = control word sw = status word rfg = ramp function generator i = par. 0104 current f = par. 0103 output freq n = speed * supported only by abb drv full profile. ** state transition also occurs if the fault is reset from any other source (e.g. digital input). (sw bit2=1) operation enabled (cw=xxxx x1*xx xxx1* 1111 a (cw bit5=0) cd b* b* (sw bit1=0) off1 active operation inhibited i.e. bit4=1)* i.e. bit5=1) i.e. bit6=1)
fieldbus control with embedded fieldbus 262 dcu communication profile because the dcu profile extends the control and status interface to 32 bits, two different signals are needed for both the control (0301 and 0302) and status (0303 and 0304) words. the following tables describe the control word content for the dcu profile. dcu profile control word (parameter 0301) bit name value information 0 stop 1 stop according to either the stop mode parameter ( 2102 ) or the stop mode requests (bits 7 and 8). note: simultaneous stop and start commands result in a stop command. 0 no operation 1start 1 start note: simultaneous stop and start commands result in a stop command. 0 no operation 2 reverse 1 reverse direction. the direction is defined by using the xor operation on bit 2 and 31 (=sign of the reference) values. 0 forward direction. 3 local 1 enter local control mode. 0 enter external control mode. 4 reset -> 1 reset. other no operation 5 ext2 1 switch to external control ext2. 0 switch to external control ext1. 6 run_disable 1 activate run disable. 0 activate run enable. 7 stpmode_r 1 stop along currently active deceleration ramp (bit 10). bit 0 value must be 1 (=stop). 0 no operation 8 stpmode_em 1 emergency stop. bit 0 value must be 1 (=stop). 0 no operation 9 stpmode_c 1 coast to stop. bit 0 value must be 1 (=stop). 0 no operation 10 ramp_2 1 use acceleration/deceleration ramp pair 2 (defined by parameters 2205 ... 2207 ). 0 use acceleration/deceleration ramp pair 1 (defined by parameters 2202 ... 2204 ). 11 ramp_out_0 1 force ramp output to zero. 0 no operation 12 ramp_hold 1 halt ramping (ramp function generator output held). 0 no operation 13 ramp_in_0 1 force ramp input to zero. 0 no operation 14 req_localloc 1 enable local lock. entering the local control mode is disabled (loc/rem key of the panel). 0 no operation 15 torqlim2 1 use minimum/maximum torque limit 2 (defined by parameters 2016 and 2018 ). 0 use minimum/maximum torque limit 1 (defined by parameters 2015 and 2017 ).
fieldbus control with embedded fieldbus 263 dcu profile control word (par. 0302) bit name value information 16 fblocal_ctl 1 fieldbus local mode for control word requested. example: if the drive is in remote control and the start/stop/direction command source is di for external control location 1 (ext1): by setting bit 16 to value 1, the start/stop/direction is controlled by the fieldbus command word. 0 no fieldbus local mode 17 fblocal_ref 1 fieldbus local mode control word for reference requested. see example in bit 16 fblocal_ctl. 0 no fieldbus local mode 18 start_disable1 1 no start enable 0 enable start. effective if parameter 1608 setting is comm. 19 start_disable2 1 no start enable 0 enable start. effective if parameter 1609 setting is comm. 20 jogging 1 1 activate jogging 1. effective if parameter 1010 setting is comm. see section jogging on page 129 . 0 jogging 1 disabled 21 jogging 2 1 activate jogging 2. effective if parameter 1010 setting is comm. see section jogging on page 129 . 0 jogging 2 disabled 22...26 reserved 27 ref_const 1 constant speed reference request. this is an internal control bit. only for supervision. 0 no operation 28 ref_ave 1 average speed reference request. this is an internal control bit. only for supervision. 0 no operation 29 link_on 1 master detected on fieldbus link. this is an internal control bit. only for supervision. 0 fieldbus link is down. 30 req_startinh 1 start inhibit 0 no start inhibit 31 reserved
fieldbus control with embedded fieldbus 264 the following tables describe the status word content for the dcu profile. dcu profile status word (par. 0303) bit name value status 0 ready 1 drive is ready to receive start command. 0 drive is not ready. 1 enabled 1 external run enable signal received. 0 no external run enable signal received. 2 started 1 drive has received start command. 0 drive has not received start command. 3 running 1 drive is modulating. 0 drive is not modulating. 4 zero_speed 1 drive is at zero speed. 0 drive has not reached zero speed. 5 accelerate 1 drive is accelerating. 0 drive is not accelerating. 6 decelerate 1 drive is decelerating. 0 drive is not decelerating. 7 at_setpoint 1 drive is at setpoint. actual value equals reference value (i.e. is within tolerance limits). 0 drive has not reached setpoint. 8 limit 1 operation is limited by group 20 limits settings. 0 operation is within group 20 limits settings. 9 supervision 1 a supervised parameter (group 32 supervision ) is outside its limits. 0 all supervised parameters are within limits. 10 rev_ref 1 drive reference is in reverse direction. 0 drive reference is in forward direction. 11 rev_act 1 drive is running in reverse direction. 0 drive is running in forward direction. 12 panel_local 1 control is in control panel (or pc tool) local mode. 0 control is not in control panel local mode. 13 fieldbus_local 1 control is in fieldbus local mode 0 control is not in fieldbus local mode. 14 ext2_act 1 control is in ext2 mode. 0 control is in ext1 mode. 15 fault 1 drive is in a fault state. 0 drive is not in a fault state.
fieldbus control with embedded fieldbus 265 dcu profile status word (par. 0304) bit name value status 16 alarm 1 an alarm is on. 0 no alarms are on. 17 notice 1 a maintenance request is pending. 0 no maintenance request 18 dirlock 1 direction lock is on. (direction change is locked.) 0 direction lock is off. 19 locallock 1 local mode lock is on. (local mode is locked.) 0 local mode lock is off. 20 ctl_mode 1 drive is in vector control mode. 0 drive is in scalar control mode. 21 jogging active jogging function is active. 22...25 reserved 26 req_ctl 1 control word requested from fieldbus 0 no operation 27 req_ref1 1 reference 1 requested from fieldbus 0 reference 1 is not requested from fieldbus. 28 req_ref2 1 reference 2 requested from fieldbus 0 reference 2 is not requested from fieldbus. 29 req_ref2ext 1 external pid reference 2 requested from fieldbus 0 external pid reference 2 is not requested from fieldbus. 30 ack_startinh 1 start inhibit from fieldbus 0 no start inhibit from fieldbus 31 reserved
fieldbus control with embedded fieldbus 266
fieldbus control with fieldbus adapter 267 fieldbus control with fieldbus adapter what this chapter contains the chapter describes how the drive can be controlled by external devices over a communication network via fieldbus adapter. system overview the drive can be connected to an external control system via a fieldbus adapter or embedded fieldbus. for embedded fieldbus control, see chapter fieldbus control with embedded fieldbus . fieldbus adapter is connected to drive terminal x3. the drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources, e.g. digital and analog inputs the drive can communicate to a control system via fieldbus adapter using one of the following serial communication protocols: ? profibus-dp? (fpba-01 adapter) ? canopen? (fcan-01 adapter) ? devicenet? (fdna-01 adapter) ? modbus? rtu (fmba-01 adapter. see chapter fieldbus control with embedded fieldbus .) fieldbus other devices fieldbus controller control word (cw) references data flow status word (sw) actual values parameter r/w requests/responses acs350 process i/o (cyclic) service messages (acyclic) x3 fieldbus adapter
fieldbus control with fieldbus adapter 268 the drive detects automatically which fieldbus adapter is connected to drive terminal x3 (exception fmba-01). dcu profile is always used in communication between the drive and fieldbus adapter (see section the fieldbus control interface on page 270 ). the communication profile on the fieldbus network depends on the type of the connected adapter. the default profile settings are protocol dependent (e.g. vendor specific profile (abb drives) for profibus and industry-standard drive profile (ac/dc drive) for devicenet). setting up communication through a fieldbus adapter module before configuring the drive for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given on page 28 in chapter mechanical installation , and the module manual. the communication between the drive and the fieldbus adapter module is activated by setting parameter 9802 comm prot sel to ext fba. the adapter-specific parameters in group 51 ext comm module must also be set. see the table below. after the module configuration parameters in group 51 ext comm module have been set, the drive control parameters (shown in section drive control parameters on page 269 ) must be checked and adjusted when necessary. the new settings will take effect when the drive is next powered up, or when parameter 5127 fba par refresh is activated. parameter alternative settings setting for fieldbus control function/information communication initialisation 9802 comm prot sel not sel std modbus ext fba modbus rs232 ext fba initialises communication between drive and fieldbus adapter module. adapter module configuration 5101 fba type ? ? displays the type of the fieldbus adapter module. 5102 fb par 2 these parameters are adapter module-specific. for more information, see the module manual. note that not all of these parameters are necessarily used. ? ? ? 5126 fb par 26 5127 fba par refresh (0) done; (1) refresh ? validates any changed adapter module configuration parameter settings. note: in adapter module the parameter group number is 1 for 51 ext comm module . transmitted data selection 5401 ... 5410 fba data in 1...10 0 1...6 101...9999 defines the data transmitted from drive to fieldbus controller. 5501 ... 5510 fba data out 1...10 0 1...6 101...9999 defines the data transmitted from fieldbus controller to drive. note: in adapter module the parameter group number is 3 for 54 fba data in and 2 for 55 fba data out .
fieldbus control with fieldbus adapter 269 drive control parameters after the fieldbus communication has been set up, the drive control parameters listed in the table below should be checked and adjusted where necessary. the setting for fieldbus control column gives the value to use when the fieldbus interface is the desired source or destination for that particular signal. the function/ information column gives a description of the parameter. parameter setting for fieldbus control function/information control command source selection 1001 ext1 commands comm selects fieldbus as the source for the start and stop commands when ext1 is selected as the active control location. 1002 ext2 commands comm selects fieldbus as the source for the start and stop commands when ext2 is selected as the active control location. 1003 direction forward reverse request enables rotation direction control as defined by parameters 1001 and 1002 . the direction control is explained in section reference handling . on page 254 . 1010 jogging sel comm enables jogging 1 or 2 activation through fieldbus. 1102 ext1/ext2 sel comm enables ext1/ext2 selection through fieldbus. 1103 ref1 select comm comm+ai1 comm*ai1 fieldbus reference ref1 is used when ext1 is selected as the active control location. see section reference selection and correction (for dcu profile) on page 249 . 1106 ref2 select comm comm+ai1 comm*ai1 fieldbus reference ref2 is used when ext2 is selected as the active control location. see section reference selection and correction (for dcu profile) on page 249 . output signal source selection 1401 relay output 1 comm comm(-1) enables relay output ro control by signal 0134 comm ro word. 1501 ao1 content sel 135 (i.e 0135 comm value 1) directs the contents of fieldbus reference 0135 comm value 1 to analog output ao. system control inputs 1601 run enable comm selects fieldbus interface as the source for the inverted run enable signal (run disable). 1604 fault reset sel comm selects fieldbus interface as the source for the fault reset signal. 1606 local lock comm selects fieldbus interface as the source for the local lock signal. 1607 param save done; save saves parameter value changes (including those made through fieldbus control) to permanent memory. 1608 start enable 1 comm selects fieldbus interface as the source for the inverted start enable 1 (start disable) signal. 1609 start enable 2 comm selects fieldbus interface as the source for the inverted start enable 2 (start disable) signal. limits 2013 min torque sel comm selects fieldbus interface as the source for the minimum torque limit 1/2 selection. 2014 max torque sel comm selects fieldbus interface as the source for the maximum torque limit 1/2 selection. 2201 acc/dec 1/2 sel comm selects fieldbus interface as the source for acceleration/deceleration ramp pair 1/2 selection 2209 ramp input 0 comm selects fieldbus interface as the source for forcing ramp input to zero.
fieldbus control with fieldbus adapter 270 the fieldbus control interface the communication between a fieldbus system and the drive consists of 16-bit input and output data words. the drive supports at the maximum the use of 10 data words in each direction. data transformed from the drive to the fieldbus controller is defined by parameter group 54 fba data in and data transformed from the fieldbus controller to the drive is defined by parameter group 55 fba data out . communication fault functions 3018 comm fault func not sel fault const sp 7 last speed determines drive action in case fieldbus communication is lost. 3019 comm fault time 0.1 ? 60.0 s defines the time between communication loss detection and the action selected with parameter 3018 comm fault func. pid controller reference signal source selection 4010 / 4110 / 4210 set point sel comm comm+ai1 comm*ai1 pid control reference (ref2) parameter setting for fieldbus control function/information fieldbus module fieldbus 5401/.../5410 data in comm fieldbus network specific interface data in 1 ... 10 data out 1 ... 10 4 = status word 5 = act1 6 = act2 par. 0102...9910 1 = control word * 2 = ref1 3 = ref2 par. 0102...9910 select 5501/.../5510 data out select not sel ... 1103 ref1 select 1106 ref2 select keypad ... comm keypad ... comm 1001/1002 start, stop, dir select 1) see also other comm-selection parameters. 1)
fieldbus control with fieldbus adapter 271 the control word and the status word the control word (cw) is the principal means of controlling the drive from a fieldbus system. the control word is sent by the fieldbus controller to the drive. the drive switches between its states according to the bit-coded instructions of the control word. the status word (sw) is a word containing status information, sent by the drive to the fieldbus controller. references references (ref) are 16-bit signed integers. a negative reference (indicating reversed direction of rotation) is formed by calculating the two?s complement from the corresponding positive reference value. the contents of each reference word can be used, as speed or frequency reference. actual values actual values (act) are 16-bit words containing information on selected operations of the drive. communication profile the communication between the drive and the fieldbus adapter supports the dcu communication profile. the dcu profile extends the control and status interface to 32 bits. data conversion fieldbus adapter abb drives transparent 16 transparent 32 drive optional reference, actual value scaling 1) 1) data conversion select 2) 1) dcu profile 2) selection via fieldbus adapter configuration parameters (parameter group 51 ext comm module ) fieldbus network industry standard drive profile (e.g. profidrive)
fieldbus control with fieldbus adapter 272 for dcu profile control and status word contents, see section dcu communication profile on page 262 . fieldbus references see section fieldbus references on page 249 for dcu profile reference selection and correction, reference scaling, reference handling and actual value scaling.
fault tracing 273 fault tracing what this chapter contains the chapter lists all alarm and fault messages including the possible cause and corrective actions. safety warning! only qualified electricians are allowed to maintain the drive. read the safety instructions in chapter safety on the first pages before you work with the drive. alarm and fault indications fault is indicated with a red led. see section leds on page 287 . an alarm or fault message on the panel display indicates abnormal drive status. using the information given in this chapter most alarm and fault causes can be identified and corrected. if not, contact an abb representative. the four digit code number in parenthesis after the alarm/fault is for the fieldbus communication. (see chapters fieldbus control with embedded fieldbus and fieldbus control with fieldbus adapter .) how to reset the drive can be reset either by pressing the keypad key (basic control panel) or (assistant control panel), through digital input or fieldbus, or by switching the supply voltage off for a while. the source for the fault reset signal is selected by parameter 1604 fault reset sel. when the fault has been removed, the motor can be restarted. fault history when a fault is detected, it is stored in the fault history. the latest faults are stored together with the time stamp. parameters 0401 last fault, 0412 previous fault 1 and 0413 previous fault 2 store the most recent faults. parameters 0404 ... 0409 show drive operation data at the time the latest fault occurred. the assistant control panel provides additional information about the fault history. see section fault logger mode on page 78 for more information. exit reset reset
fault tracing 274 alarm messages generated by the drive code alarm cause what to do 2001 overcurrent (2310) 0308 bit 0 (programmable fault function 1610 ) output current limit controller is active. check motor load. check acceleration time ( 2202 and 2205 ). check motor and motor cable (including phasing). check ambient conditions. load capacity decreases if installation site ambient temperature exceeds 40c. see section derating on page 291 . 2002 overvoltage (3210) 0308 bit 1 (programmable fault function 1610 ) dc overvoltage controller is active. check deceleration time ( 2203 and 2206 ). check input power line for static or transient overvoltage. 2003 undervoltage (3220) 0308 bit 2 (programmable fault function 1610 ) dc undervoltage controller is active. check input power supply. 2004 dirlock 0308 bit 3 change of direction is not allowed. check parameter 1003 direction settings. 2005 io comm (7510) 0308 bit 4 (programmable fault function 3018 , 3019 ) fieldbus communication break check status of fieldbus communication. see chapter fieldbus control with fieldbus adapter / fieldbus control with embedded fieldbus or appropriate fieldbus adapter manual. check fault function parameter settings. check connections. check if master can communicate. 2006 ai1 loss (8110) 0308 bit 5 (programmable fault function 3001 , 3021 ) analog input ai1 signal has fallen below limit defined by parameter 3021 ai1 fault limit. check fault function parameter settings. check for proper analog control signal levels. check connections. 2007 ai2 loss (8110) 0308 bit 6 (programmable fault function 3001 , 3022 ) analog input ai2 signal has fallen below limit defined by parameter 3022 ai2 fault limit. check fault function parameter settings. check for proper analog control signal levels. check connections. 2008 panel loss (5300) 0308 bit 7 (programmable fault function 3002 ) control panel selected as active control location for drive has ceased communicating. check panel connection. check fault function parameters. check control panel connector. refit control panel in mounting platform. if drive is external control mode (rem) and is set to accept start/stop, direction commands or references via control panel: check group 10 start/stop/dir and 11 reference select settings.
fault tracing 275 2009 device overtemp (4210) 0308 bit 8 drive igbt temperature is excessive. alarm limit is 120c. check ambient conditions. see also section derating on page 291 . check air flow and fan operation. check motor power against unit power. 2010 motor temp (4310) 0305 bit 9 (programmable fault function 3005 ... 3009 / 3503 ) motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data. check motor ratings, load and cooling. check start-up data. check fault function parameters. measured motor temperature has exceeded alarm limit set by parameter 3503 alarm limit. check value of alarm limit. check that actual number of sensors corresponds to value set by parameter ( 3501 sensor type). let motor cool down. ensure proper motor cooling: check cooling fan, clean cooling surfaces, etc. 2011 underload (ff6a) 0308 bit 10 (programmable fault function 3013 ... 3015 ) motor load is too low due to e.g. release mechanism in driven equipment. check for problem in driven equipment. check fault function parameters. check motor power against unit power. 2012 motor stall (7121) 0308 bit 11 (programmable fault function 3010 ... 3012 ) motor is operating in stall region due to e.g. excessive load or insufficient motor power. check motor load and drive ratings. check fault function parameters. 2013 autoreset 0308 bit 12 automatic reset alarm check parameter group 31 automatic reset settings. 2018 pid sleep 0309 bit 1 sleep function has entered sleeping mode. see parameter groups 40 process pid set 1 .. . 41 process pid set 2 . 2019 id run 0309 bit 2 motor identification run is on. this alarm belongs to normal start-up procedure. wait until drive indicates that motor identification is completed. 2021 start enable 1 missing 0309 bit 4 no start enable 1 signal received check parameter 1608 start enable 1settings. check digital input connections. check fieldbus communication settings. 2022 start enable 2 missing 0309 bit 5 no start enable 2 signal received check parameter 1609 start enable 2 settings. check digital input connections. check fieldbus communication settings. 2023 emergency stop 0309 bit 6 drive has received emergency stop command and ramps to stop according to ramp time defined by parameter 2208 emer dec time. check that it is safe to continue operation. return emergency stop push button to normal position. code alarm cause what to do
fault tracing 276 alarms generated by the basic control panel the basic control panel indicates control panel alarms with a code, a5xxx. 2024 encoder err (7301) 0306 bit 6 (programmable fault function 5003 ) communication fault between pulse encoder and pulse encoder interface module or between module and drive. check pulse encoder and its wiring, pulse encoder interface module and its wiring and parameter group 50 encoder settings. 2025 first start 0309 bit 8 motor identification magnetisation is on. this alarm belongs to normal start-up procedure. wait until drive indicates that motor identification is completed. 2026 input phase loss (3130) 0306 bit 5 (programmable fault function 3016 ) intermediate circuit dc voltage is oscillating due to missing input power line phase or blown fuse. alarm is generated when dc voltage ripple exceeds 14% of nominal dc voltage. check input power line fuses. check for input power supply imbalance. check fault function parameters. alarm code cause what to do 5001 drive is not responding. check panel connection. 5002 incompatible communication profile contact your local abb representative. 5010 corrupted panel parameter backup file retry parameter upload. retry parameter download. 5011 drive is controlled from another source. change drive control to local control mode. 5012 direction of rotation is locked. enable change of direction. see parameter 1003 direction. 5013 panel control is disabled because start inhibit is active. deactivate start inhibit and retry. see parameter 2108 start inhibit. 5014 panel control is disabled because of drive fault. reset drive fault and retry. 5015 panel control is disabled because local control mode lock is active. deactivate local control mode lock and retry. see parameter 1606 local lock. 5018 parameter default value is not found. contact your local abb representative. 5019 writing non-zero parameter value is prohibited. only parameter reset is allowed. 5020 parameter or parameter group does not exist or parameter value is inconsistent. contact your local abb representative. 5021 parameter or parameter group is hidden. contact your local abb representative. 5022 parameter is write protected. parameter value is read-only and cannot be changed. 5023 parameter change is not allowed, when drive is running. stop drive and change parameter value. 5024 drive is executing task. wait until task is completed. 5025 software is being uploaded or downloaded. wait until upload/download is complete. 5026 value is at or below minimum limit. contact your local abb representative. 5027 value is at or above maximum limit. contact your local abb representative. 5028 invalid value contact your local abb representative. code alarm cause what to do
fault tracing 277 5029 memory is not ready. retry. 5030 invalid request contact your local abb representative. 5031 drive is not ready for operation, e.g due to low dc voltage. check input power supply. 5032 parameter error contact your local abb representative. 5040 parameter download error. selected parameter set is not in current parameter backup file. perform upload function before download. 5041 parameter backup file does not fit into memory. contact your local abb representative. 5042 parameter download error. selected parameter set is not in current parameter backup file. perform upload function before download. 5043 no start inhibit 5044 parameter backup file restoring error check that file is compatible with drive. 5050 parameter upload aborted retry parameter upload. 5051 file error contact your local abb representative. 5052 parameter upload has failed. retry parameter upload. 5060 parameter download aborted retry parameter download. 5062 parameter download has failed. retry parameter download. 5070 panel backup memory write error contact your local abb representative. 5071 panel backup memory read error contact your local abb representative. 5080 operation is not allowed because drive is not in local control mode. switch to local control mode. 5081 operation is not allowed because of active fault. check cause of fault and reset fault. 5082 operation is not allowed because override mode is enabled. 5083 operation is not allowed because parameter lock is on. check parameter 1602 parameter lock setting. 5084 operation is not allowed because drive is performing task. wait until task is completed and retry. 5085 parameter download from source to destination drive has failed. check that source and destination drive types are same, i.e. acs350. see drive type designation label. 5086 parameter download from source to destination drive has failed. check that source and destination drive type codes are same. see drive type designation label. 5087 parameter download from source to destination drive has failed because parameter sets are incompatible. check that source and destination drive information are same. see parameters in group 33 information . 5088 operation has failed because of drive memory error. contact your local abb representative. 5089 download has failed because of crc error. contact your local abb representative. 5090 download has failed because of data processing error. contact your local abb representative. 5091 operation has failed because of parameter error. contact your local abb representative. 5092 parameter download from source to destination drive has failed because parameter sets are incompatible. check that source and destination drive information are same. see parameters in group 33 information . alarm code cause what to do
fault tracing 278 fault messages generated by the drive code fault cause what to do 0001 overcurrent (2310) 0305 bit 0 output current has exceeded trip level. check motor load. check acceleration time ( 2202 and 2205 ). check motor and motor cable (including phasing). check ambient conditions. load capacity decreases if installation site ambient temperature exceeds 40c. see section derating on page 291 . 0002 dc overvolt (3210) 0305 bit 1 excessive intermediate circuit dc voltage. dc overvoltage trip limit is 420 v for 200 v drives and 840 v for 400 v drives. check that overvoltage controller is on (parameter 2005 overvolt ctrl). check input power line for static or transient overvoltage. check brake chopper and resistor (if used). dc overvoltage control must be deactivated when brake chopper and resistor is used. check deceleration time ( 2203 , 2206 ). retrofit frequency converter with brake chopper and brake resistor. 0003 dev overtemp (4210) 0305 bit 2 drive igbt temperature is excessive. fault trip limit is 135c. check ambient conditions. see also section derating on page 291 . check air flow and fan operation. check motor power against unit power. 0004 short circ (2340) 0305 bit 3 short circuit in motor cable(s) or motor check motor and motor cable. 0006 dc undervolt (3220) 0305 bit 5 intermediate circuit dc voltage is not sufficient due to missing input power line phase, blown fuse, rectifier bridge internal fault or too low input power. check that undervoltage controller is on (parameter 2006 undervolt ctrl). check input power supply and fuses. 0007 ai1 loss (8110) 0305 bit 6 (programmable fault function 3001 , 3021 ) analog input ai1 signal has fallen below limit defined by parameter 3021 ai1 fault limit. check fault function parameter settings. check for proper analog control signal levels. check connections. 0008 ai2 loss (8110) 0305 bit 7 (programmable fault function 3001 , 3022 ) analog input ai2 signal has fallen below limit defined by parameter 3022 ai2 fault limit. check fault function parameter settings. check for proper analog control signal levels. check connections.
fault tracing 279 0009 mot overtemp (4310) 0305 bit 8 (programmable fault function 3005 ... 3009 / 3504 ) motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data. check motor ratings, load and cooling. check start-up data. check fault function parameters. measured motor temperature has exceeded fault limit set by parameter 3504 fault limit. check value of fault limit. check that actual number of sensors corresponds to value set by parameter ( 3501 sensor type). let motor cool down. ensure proper motor cooling: check cooling fan, clean cooling surfaces, etc. 0010 panel loss (5300) 0305 bit 9 (programmable fault function 3002 ) control panel selected as active control location for drive has ceased communicating. check panel connection. check fault function parameters. check control panel connector. refit control panel in mounting platform. if drive is external control mode (rem) and is set to accept start/stop, direction commands or references via control panel: check group 10 start/stop/dir and 11 reference select settings. 0011 id run fail (ff84) 0305 bit 10 motor id run is not completed successfully. check motor connection. check start-up data (group 99 start-up data ). check maximum speed (parameter 2002 ). it should be at least 80% of motor nominal speed (parameter 9908 ). ensure id run has been performed according to instructions in section how to perform the id run on page 54 . 0012 motor stall (7121) 0305 bit 11 (programmable fault function 3010 ? 3012 ) motor is operating in stall region due to e.g. excessive load or insufficient motor power. check motor load and drive ratings. check fault function parameters. 0014 ext fault 1 (9000) 0305 bit 13 (programmable fault function 3003 ) external fault 1 check external devices for faults. check parameter 3003 external fault 1 setting. 0015 ext fault 2 (9001) 0305 bit 14 (programmable fault function 3004 ) external fault 2 check external devices for faults. check parameter 3004 external fault 2 setting. 0016 earth fault (2330) 0305 bit 15 (programmable fault function 3017 ) drive has detected earth (ground) fault in motor or motor cable. check motor. check fault function parameters. check motor cable. motor cable length must not exceed maximum specifications. see section motor connection on page 296 . code fault cause what to do
fault tracing 280 0017 underload (ff6a) 0306 bit 0 (programmable fault function 3013 ... 3015 ) motor load is too low due to e.g. release mechanism in driven equipment. check for problem in driven equipment. check fault function parameters. check motor power against unit power. 0018 therm fail (5210) 0306 bit 1 drive internal fault. thermistor used for drive internal temperature measurement is open or short-circuited. contact your local abb representative. 0021 curr meas (2211) 0306 bit 4 drive internal fault. current measurement is out of range. contact your local abb representative. 0022 supply phase (3130) 0306 bit 5 (programmable fault function 3016 ) intermediate circuit dc voltage is oscillating due to missing input power line phase or blown fuse. trip occurs when dc voltage ripple exceeds 14% of nominal dc voltage. check input power line fuses. check for input power supply imbalance. check fault function parameters. 0023 encoder err (7301) 0306 bit 6 (programmable fault function 5003 ) communication fault between pulse encoder and pulse encoder interface module or between module and drive. check pulse encoder and its wiring, pulse encoder interface module and its wiring and parameter group 50 encoder settings. 0024 overspeed (7310) 0306 bit 7 motor is turning faster than highest allowed speed due to incorrectly set minimum/ maximum speed, insufficient braking torque or changes in load when using torque reference. operating range limits are set by parameters 2001 minimum speed and 2002 maximum speed (with vector control) or 2007 minimum freq and 2008 maximum freq (with scalar control). check minimum/maximum speed settings. check adequacy of motor braking torque. check applicability of torque control. check need for brake chopper and resistor(s). 0026 drive id (5400) 0306 bit 9 internal drive id fault contact your local abb representative. 0027 config file (630f) 0306 bit 10 internal configuration file error contact your local abb representative. code fault cause what to do
fault tracing 281 0028 serial 1 err (7510) 0306 bit 11 (programmable fault function 3018 , 3019 ) fieldbus communication break check status of fieldbus communication. see chapter fieldbus control with fieldbus adapter / fieldbus control with embedded fieldbus or appropriate fieldbus adapter manual. check fault function parameter settings. check connections. check if master can communicate. 0030 force trip (ff90) 0306 bit 13 trip command received from fieldbus see appropriate communication module manual. 0034 motor phase (ff56) 0306 bit 14 motor circuit fault due to missing motor phase or motor thermistor relay (used in motor temperature measurement) fault. check motor and motor cable. check motor thermistor relay (if used). 0035 outp wiring (ff95) 0306 bit 15 (programmable fault function 3023 ) incorrect input power and motor cable connection (i.e. input power cable is connected to drive motor connection). check input power connections. check fault function parameters. 0036 incompatible sw (630f) 0307 bit 3 loaded software is not compatible. contact your local abb representative. 0101 serf corrupt (ff55) 0307 bit 14 drive internal error write down fault code and contact your local abb representative. 0103 serf macro (ff55) 0307 bit 14 0201 dsp t1 overload (6100) 0307 bit 13 0202 dsp t2 overload (6100) 0307 bit 13 0203 dsp t3 overload (6100) 0307 bit 13 0204 dsp stack error (6100) 0307 bit 12 0206 mmio id error (5000) 0307 bit 11 code fault cause what to do
fault tracing 282 1000 par hzrpm (6320) 0307 bit 15 incorrect speed/frequency limit parameter setting check parameter settings. check that following applies: 2001 < 2002 , 2007 < 2008 , 2001 / 9908 , 2002 / 9908 , 2007 / 9907 and 2008 / 9907 are within range. 1003 par ai scale (6320) 0307 bit 15 incorrect analog input ai signal scaling check parameter group 13 analogue inputs settings. check that following applies: 1301 < 1302 , 1304 < 1305 . 1004 par ao scale (6320) 0307 bit 15 incorrect analog output ao signal scaling check parameter group 15 analogue outputs settings. check that following applies: 1504 < 1505 . 1005 par pcu 2 (6320) 0307 bit 15 incorrect motor nominal power setting check parameter 9909 setting. following must apply: 1.1 < ( 9906 motor nom curr 9905 motor nom volt 1.73 / p n ) < 3.0 where p n = 1000 9909 motor nom power (if units are in kw) or p n = 746 9909 motor nom power (if units are in hp). 1007 par fbusmiss (6320) 0307 bit 15 fieldbus control has not been activated. check fieldbus parameter settings. see chapter fieldbus control with fieldbus adapter . 1009 par pcu 1 (6320) 0307 bit 15 incorrect motor nominal speed/ frequency setting check parameter settings. following must apply: 1 < (60 9907 motor nom freq / 9908 motor nom speed) < 16 0.8 < 9908 motor nom speed / (120 9907 motor nom freq / motor poles) < 0.992 1015 par custom u/f (6320) 0307 bit 15 incorrect voltage to frequency (u/f) ratio voltage setting. check parameter 2610 ... 2617 settings. 1017 par setup 1 (6320) 0307 bit 15 it is not allowed to use mtac encoder module, frequency input signal and frequency output signal simultaneously. disable frequency output, frequency input or encoder: - change transistor output to digital mode (value of parameter 1804 = digital), or - change frequency input selection to other value in parameter groups 11 reference select, 40 process pid set 1, 41 process pid set 2 and 42 ext / trim pid , or - disable (parameter 5002 ) and remove mtac encoder module. code fault cause what to do
fault tracing 283 embedded fieldbus faults embedded fieldbus faults can be traced by monitoring group 53 efb protocol parameters. see also fault/alarm serial 1 err . no master device if there is no master device on line, parameter 5306 efb ok messages and 5307 efb crc errors values remain unchanged. what to do: ? check that the network master is connected and properly configured. ? check the cable connection. same device address if two or more devices have the same address, parameter 5307 efb crc errors value increases with every read/write command. what to do: ? check the device addresses. no two devices on line may have the same address. incorrect wiring if the communication wires are swapped (terminal a on one device is connected to terminal b on another device), parameter 5306 efb ok messages value remains unchanged and parameter 5307 efb crc errors increases. what to do: ? check the rs-232/485 interface connection.
fault tracing 284
maintenance and hardware diagnostics 285 maintenance and hardware diagnostics what this chapter contains the chapter contains preventive maintenance instructions and led indicator descriptions. safety warning! read the instructions in chapter safety on the first pages of this manual before performing any maintenance on the equipment. ignoring the safety instructions can cause injury or death. maintenance intervals if installed in an appropriate environment, the drive requires very little maintenance. the table lists the routine maintenance intervals recommended by abb. fan the drive?s cooling fan has a life span of minimum 25 000 operating hours. the actual life span depends on the drive usage and ambient temperature. when the assistant control panel is in use, the notice handler assistant informs when the definable value of the operating hour counter is reached (see parameter 2901 ). this information can also be passed to the relay output (see parameter 1401 ) regardless of the used panel type. fan failure can be predicted by the increasing noise from the fan bearings. if the drive is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. replacement fans are available from abb. do not use other than abb specified spare parts. maintenance interval instruction reforming of capacitors every two years when stored see capacitors on page 286 . cooling fan replacement (frame sizes r1?r4) every three years see fan on page 285 . replacement of the battery in the assistant control panel every ten years see battery on page 287 .
maintenance and hardware diagnostics 286 fan replacement (r1?r4) only frame sizes r1?r4 include a fan; frame size r0 has natural cooling. 1. stop the drive and disconnect it from the ac power source. 2. remove the hood if the drive has the nema 1 option. 3. lever the fan holder off the drive frame with e.g. a screwdriver and lift the hinged fan holder slightly upward from its front edge. 4. free the fan cable from the clip. 5. disconnect the fan cable. 6. remove the fan holder from the hinges. 7. install the new fan holder including the fan in reverse order. 8. restore power. capacitors reforming the capacitors must be reformed if the drive has been stored for two years. see the table on page 26 for how to find out the manufacturing time from the serial number. for information on reforming the capacitors, refer to guide for capacitor reforming in acs50/150/350/550 [3afe68735190 (english)], available on the internet (go to http://www.abb.com and enter the code in the search field). control panel cleaning use a soft damp cloth to clean the control panel. avoid harsh cleaners which could scratch the display window. 3 6 4 5 7
maintenance and hardware diagnostics 287 battery a battery is only used in assistant control panels that have the clock function available and enabled. the battery keeps the clock operating in memory during power interruptions. the expected life for the battery is greater than ten years. to remove the battery, use a coin to rotate the battery holder on the back of the control panel. replace the battery with type cr2032. note: the battery is not required for any control panel or drive functions, except the clock. leds there is a green and a red led on the front of the drive. they are visible through the panel cover but invisible if a control panel is attached to the drive. the assistant control panel has one led. the table below describes the led indications. where led off led lit and steady led blinking on the front of the drive. if a control panel is attached to the drive, switch to remote control (otherwise a fault will be generated), and then remove the panel to be able to see the leds. no power green power supply on the board ok green drive in an alarm state red drive in a fault state. to reset the fault, press reset from the control panel or switch off the drive power. red drive in a fault state. to reset the fault, switch off the drive power. at the top left corner of the assistant control panel panel has no power or no drive connection. green drive in a normal state green drive in an alarm state red drive in a fault state. to reset the fault, press reset from the control panel or switch off the drive power. red -
maintenance and hardware diagnostics 288
technical data 289 technical data what this chapter contains the chapter contains the technical specifications of the drive, e.g. the ratings, sizes and technical requirements as well as provisions for fulfilling the requirements for ce and other marks.
technical data 290 ratings current and power the current and power ratings are given below. the symbols are described below the table. 1) e = emc filter connected, u = emc filter disconnected. metal emc filter screw is installed in ?e? versions and plastic screw in ?u? versions. 2) preliminary value type input output frame size acs350- i 1n i 2n i 2,1min/10min i 2max p n x = e/u 1) aaaakwhp 1-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 01x-02a4-2 6.1 2.4 3.6 4.2 0.37 0.5 r0 01x-04a7-2 11.4 4.7 7.1 8.2 0.75 1 r1 01x-06a7-2 16.1 6.7 10.1 11.7 1.1 1.5 r1 01x-07a5-2 16.8 7.5 11.3 13.1 1.5 2 r2 01x-09a8-2 21.0 9.8 14.7 17.2 2.2 3 r2 3-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 03x-02a4-2 4.3 2.4 3.6 4.2 0.37 0.5 r0 03x-03a5-2 6.1 3.5 5.3 6.1 0.55 0.75 r0 03x-04a7-2 7.6 4.7 7.1 8.2 0.75 1 r1 03x-06a7-2 11.8 6.7 10.1 11.7 1.1 1.5 r1 03x-07a5-2 12.0 7.5 11.3 13.1 1.5 2 r1 03x-09a8-2 14.3 9.8 14.7 17.2 2.2 3 r2 03x-13a3-2 21.7 13.3 20.0 23.3 3 3 r2 03x-17a6-2 24.8 17.6 26.4 30.8 4 5 r2 03x-24a4- 2 41 24.4 36.6 42.7 5.5 7.5 r3 03x-31a0-2 50 31 46.5 54.3 7.5 10 r4 03x-46a2-2 69 46.2 69.3 2) 80.9 11.0 15 r4 3-phase u n = 380?480 v (380, 400, 415, 440, 460, 480 v) 03x-01a2-4 2.2 1.2 1.8 2.1 0.37 0.5 r0 03x-01a9-4 3.6 1.9 2.9 3.3 0.55 0.75 r0 03x-02a4-4 4.1 2.4 3.6 4.2 0.75 1 r1 03x-03a3-4 6.0 3.3 5.0 5.8 1.1 1.5 r1 03x-04a1-4 6.9 4.1 6.2 7.2 1.5 2 r1 03x-05a6-4 9.6 5.6 8.4 9.8 2.2 3 r1 03x-07a3-4 11.6 7.3 11.0 12.8 3 3 r1 03x-08a8-4 13.6 8.8 13.2 15.4 4 5 r1 03x-12a5-4 18.8 12.5 18.8 21.9 5.5 7.5 r3 03x-15a6-4 22.1 15.6 23.4 27.3 7.5 10 r3 03x-23a1-4 30.9 23.1 34.7 40.4 11 15 r3 03x-31a0-4 52 31 46.5 54.3 15 20 r4 03x-38a0-4 61 38 57 66.5 18.5 25 r4 03x-44a0-4 67 44 66 2) 77.0 22.0 30 r4 00353783.xls g
technical data 291 symbols sizing the current ratings are the same regardless of the supply voltage within one voltage range. to achieve the rated motor power given in the table, the rated current of the drive must be higher than or equal to the rated motor current. note 1: the maximum allowed motor shaft power is limited to 1.5 p n . if the limit is exceeded, motor torque and current are automatically restricted. the function protects the input bridge of the drive against overload. note 2: the ratings apply at ambient temperature of 40c (104f). derating the load capacity decreases if the installation site ambient temperature exceeds 40c (104f) or if the altitude exceeds 1000 meters (3300 ft). temperature derating in the temperature range +40c?+50c (+104f?+122f), the rated output current is decreased by 1% for every additional 1c (1.8f). the output current is calculated by multiplying the current given in the rating table by the derating factor. example if the ambient temperature is 50c (+122f), the derating factor is 100% - 1 10c = 90% or 0.90. the output current is then 0.90 i 2n . altitude derating in altitudes 1000?2000 m (3300?6600 ft) above sea level, the derating is 1% for every 100 m (330 ft). switching frequency derating derate according to the switching frequency used (see parameter 2606 ) as follows: ensure that parameter 2607 switch freq ctrl = 1 (on), which reduces the switching frequency if the drive?s internal temperature is too high. see parameter 2607 for details. input i 1n continuous rms input current (for dimensioning cables and fuses) output i 2n continuous rms current. 50% overload is allowed for one minute every ten minutes. i 2,1min/10min maximum (50% overload) current allowed for one minute every ten minutes i 2max maximum output current. available for two seconds at start, otherwise as long as allowed by the drive temperature. p n typical motor power. the kilowatt ratings apply to most iec 4-pole motors. the horsepower ratings apply to most nema 4-pole motors. switching frequency drive voltage rating u n = 200?240 v u n = 380?480 v 4 khz no derating no derating 8khz derate i 2n to 90%. derate i 2n to 75% for r0 or to 80% for r1?r4. 12 khz derate i 2n to 80%. derate i 2n to 50% for r0 or to 65% for r1?r4 and derate maximum ambient temperature to 30c (86f). 16 khz derate i 2n to 75%. derate i 2n to 50% and derate maximum ambient temperature to 30c (86f). % c
technical data 292 cooling air flow requirements the table below specifies the heat dissipation in the main circuit at nominal load and in the control circuit with minimum load (i/o and panel not in use) and maximum load (all digital inputs in the on state and the panel, fieldbus and fan in use). the total heat dissipation is the sum of the heat dissipation in the main and control circuits. type heat dissipation air flow acs350- main circuit control circuit x = e/u rated i 1n and i 2n min max w btu/hr w btu/hr w btu/hr m 3 /h ft 3 /min 1-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 01x-02a4-2 25 85 6.1 21 22.7 78 - - 01x-04a7-2 46 157 9.5 32 26.4 90 24 14 01x-06a7-2 71 242 9.5 32 26.4 90 24 14 01x-07a5-2 73 249 10.5 36 27.5 94 21 12 01x-09a8-2 96 328 10.5 36 27.5 94 21 12 3-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 03x-02a4-2 19 65 6.1 21 22.7 78 - - 03x-03a5-2 31 106 6.1 21 22.7 78 - - 03x-04a7-2 38 130 9.5 32 26.4 90 24 14 03x-06a7-2 60 205 9.5 32 26.4 90 24 14 03x-07a5-2 62 212 9.5 32 26.4 90 21 12 03x-09a8-2 83 283 10.5 36 27.5 94 21 12 03x-13a3-2 112 383 10.5 36 27.5 94 52 31 03x-17a6-2 152 519 10.5 36 27.5 94 52 31 03x-24a4- 2 250 854 16.6 57 35.4 121 71 42 03x-31a0-2 270 922 33.4 114 57.8 197 96 57 03x-46a2-2 430 1469 33.4 114 57.8 197 96 57 3-phase u n = 380?480 v (380, 400, 415, 440, 460, 480 v) 03x-01a2-4 11 38 6.6 23 24.4 83 - - 03x-01a9-4 16 55 6.6 23 24.4 83 - - 03x-02a4-4 21 72 9.8 33 28.7 98 13 8 03x-03a3-4 31 106 9.8 33 28.7 98 13 8 03x-04a1-4 40 137 9.8 33 28.7 98 13 8 03x-05a6-4 61 208 9.8 33 28.7 98 19 11 03x-07a3-4 74 253 14.1 48 32.7 112 24 14 03x-08a8-4 94 321 14.1 48 32.7 112 24 14 03x-12a5-4 130 444 12.0 41 31.2 107 52 31 03x-15a6-4 173 591 12.0 41 31.2 107 52 31 03x-23a1-4 266 908 16.6 57 35.4 121 71 42 03x-31a0-4 350 1195 33.4 114 57.8 197 96 57 03x-38a0-4 440 1503 33.4 114 57.8 197 96 57 03x-44a0-4 530 1810 33.4 114 57.8 197 96 57 00353783.xls g
technical data 293 power cable sizes and fuses cable dimensioning for rated currents ( i 1n ) is shown in the table below together with the corresponding fuse types for short-circuit protection of the input power cable. the rated fuse currents given in the table are the maxima for the mentioned fuse types. if smaller fuse ratings are used, check that the fuse rms current rating is larger than the rated i 1n current given in the rating table on page 290 . if 150% output power is needed, multiply current i 1n by 1.5. see also section selecting the power cables on page 32 . check that the operating time of the fuse is below 0.5 seconds . the operating time depends on the fuse type, the supply network impedance as well as the cross- sectional area, material and length of the supply cable. in case the 0.5 seconds operating time is exceeded with the gg or t fuses, ultra rapid (ar) fuses will in most cases reduce the operating time to an acceptable level.
technical data 294 note: larger fuses must not be used. 1) if 50% overload capacity is needed, use the bigger fuse alternative. type acs350- x = e/u fuses size of cu conductor in cablings gg ul class t (600 v) supply (u1, v1, w1) motor (u2, v2, w2) pe brake (brk+ and brk-) aamm 2 awg mm 2 awg mm 2 awg mm 2 awg 1-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 01x-02a4-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14 01x-04a7-2 16 20 2.5 14 0.75 18 2.5 14 2.5 14 01x-06a7-2 16/20 1) 25 2.5 10 1.5 14 2.5 10 2.5 12 01x-07a5-2 20/25 1) 30 2.5 10 1.5 14 2.5 10 2.5 12 01x-09a8-2 25/35 1) 35 6 10 2.5 12 6 10 6 12 3-phase u n = 200?240 v (200, 208, 220, 230, 240 v) 03x-02a4-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14 03x-03a5-2 10 10 2.5 14 0.75 18 2.5 14 2.5 14 03x-04a7-2 10 15 2.5 14 0.75 18 2.5 14 2.5 14 03x-06a7-2 16 15 2.5 12 1.5 14 2.5 12 2.5 12 03x-07a5-2 16 15 2.5 12 1.5 14 2.5 12 2.5 12 03x-09a8-2 16 20 2.5 12 2.5 12 2.5 12 2.5 12 03x-13a3-2 25 30 6 10 6 10 6 10 2.5 12 03x-17a6-2 25 35 6 10 6 10 6 10 2.5 12 03x-24a4-2 63 60 10 8 10 8 10 8 6 10 03x-31a0-2 80 80 16 6 16 6 16 6 10 8 03x-46a2-2 100 100 25 2 25 2 16 4 10 8 3-phase u n = 380?480 v (380, 400, 415, 440, 460, 480 v) 03x-01a2-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14 03x-01a9-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14 03x-02a4-4 10 10 2.5 14 0.75 18 2.5 14 2.5 14 03x-03a3-4 10 10 2.5 12 0.75 18 2.5 12 2.5 12 03x-04a1-4 16 15 2.5 12 0.75 18 2.5 12 2.5 12 03x-05a6-4 16 15 2.5 12 1.5 14 2.5 12 2.5 12 03x-07a3-4 16 20 2.5 12 1.5 14 2.5 12 2.5 12 03x-08a8-4 20 25 2.5 12 2.5 12 2.5 12 2.5 12 03x-12a5-4 25 30 6 10 6 10 6 10 2.5 12 03x-15a6-4 35 35 6 8 6 8 6 8 2.5 12 03x-23a1-4 50 50 10 8 10 8 10 8 6 10 03x-31a0-4 80 80 16 6 16 6 16 6 10 8 03x-38a0-4 100 100 16 4 16 4 16 4 10 8 03x-44a0-4 100 100 25 4 25 4 16 4 10 8 00353783.xls h
technical data 295 power cables: terminal sizes, maximum cable diameters and tightening torques dimensions, weights and noise symbols frame size max cable diameter for nema 1 u1, v1, w1, u2, v2, w2, brk+ and brk- pe u1, v1, w1, u2, v2, w2 brk+ and brk- terminal size tightening torque clamp size tightening torque mm in. mm in. mm 2 awg nm lbf in. mm 2 awg nm lbf in. r0 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11 r1 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11 r2 16 0.63 16 0.63 4.0/6.0 10 0.8 7 25 3 1.2 11 r3 29 1.14 16 0.63 10.0/16.0 6 1.7 15 25 3 1.2 11 r4 35 1.38 29 1.14 25.0/35.0 2 2.5 22 25 3 1.2 11 00353783.xls g frame size dimensions and weights noise ip20 (cabinet) / ul open h1 h2 h3 w d weight noise level mm in. mm in. mm in. mm in. mm in. kg lb dba r0 169 6.65 202 7.95 239 9.41 70 2.76 161 6.34 1.2 2.6 <30 r1 169 6.65 202 7.95 239 9.41 70 2.76 161 6.34 1.2 2.6 50?62 r2 169 6.65 202 7.95 239 9.41 105 4.13 165 6.50 1.5 3.3 50?62 r3 169 6.65 202 7.95 236 9.29 169 6.65 169 6.65 2.5 5.5 50?62 r4 181 7.13 202 7.95 244 9.61 260 10.24 169 6.65 4.4 9.7 <62 00353783.xls g frame size dimensions and weights noise ip20 / nema 1 h4 h5 w d weight noise level mm in. mm in. mm in. mm in. kg lb dba r0 257 10.12 280 11.02 70 2.76 169 6.65 1.6 3.5 <30 r1 257 10.12 280 11.02 70 2.76 169 6.65 1.6 3.5 50?62 r2 257 10.12 282 11.10 105 4.13 169 6.65 1.9 4.2 50?62 r3 260 10.24 299 11.77 169 6.65 177 6.97 3.1 6.8 50?62 r4 270 10.63 320 12.60 260 10.24 177 6.97 5.0 11.0 <62 00353783.xls g ip20 (cabinet) / ul open h1 height without fastenings and clamping plate h2 height with fastenings, without clamping plate h3 height with fastenings and clamping plate ip20 / nema 1 h4 height with fastenings and connection box h5 height with fastenings, connection box and hood
technical data 296 input power connection voltage ( u 1 ) 200/208/220/230/240 vac 1-phase for 200 vac drives 200/208/220/230/240 vac 3-phase for 200 vac drives 380/400/415/440/460/480 vac 3-phase for 400 vac drives 10% variation from converter nominal voltage is allowed as default. short-circuit capacity maximum allowed prospective short-circuit current at the input power connection as defined in iec 60439-1 is 100 ka. the drive is suitable for use in a circuit capable of delivering not more than 100 ka rms symmetrical amperes at the drive maximum rated voltage. frequency 50/60 hz 5%, maximum rate of change 17%/s imbalance max. 3% of nominal phase to phase input voltage fundamental power factor (cos phi 1 ) 0.98 (at nominal load) motor connection voltage ( u 2 ) 0 to u 1 , 3-phase symmetrical, u max at the field weakening point short-circuit protection (iec 61800-5-1, ul 508c) the motor output is short-circuit proof by iec 61800-5-1 and ul 508c. frequency vector control: 0?max. 150 hz recommended scalar control: 0?500 hz frequency resolution 0.01 hz current see section ratings on page 290 . power limit 1.5 p n field weakening point 10?500 hz switching frequency 4, 8, 12 or 16 khz (in scalar control mode) speed control see section speed control performance figures on page 114 . torque control see section torque control performance figures on page 114 . maximum recommended motor cable length r0: 30 m (100 ft), r1?r4: 50 m (165 ft) with output chokes the motor cable length may be extended to 60 m (195 ft) for r0 and 100 m (330 ft) for r1?r4. to comply with the european emc directive, use the cable lengths specified in the table below for 4 khz switching frequency. the lengths are given for using the drive with the internal emc filter or an optional external emc filter. 4 khz switching frequency internal emc filter optional external emc filter second environment (category c3 1) ) 30 m (100 ft) 30 m (100 ft) minimum first environment (category c2 1) ) - 30 m (100 ft) 1) see the new terms in section iec/en 61800-3 (2004) definitions on page 301 .
technical data 297 control connections analog inputs x1a: 2 and 5 voltage signal, unipolar 0 (2)?10 v, r in > 312 kohm bipolar -10?10 v, r in > 312 kohm current signal, unipolar 0 (4)?20 ma, r in = 100 ohm bipolar -20?20 ma, r in = 100 ohm potentiometer reference value (x1a: 4) 10 v 1%, max. 10 ma, r <10kohm resolution 0.1% accuracy 1% analog output x1a: 7 0 (4)?20 ma, load < 500 ohm auxiliary voltage x1a: 9 24 vdc 10%, max. 200 ma digital inputs x1a: 12?16 (frequency input x1a: 16) voltage 12?24 vdc with internal or external supply type pnp and npn frequency input pulse train 0?16 khz (x1a: 16 only) input impedance 2.4 kohm relay output x1b: 17?19 type no + nc max. switching voltage 250 vac / 30 vdc max. switching current 0.5 a / 30 vdc; 5 a / 230 vac max. continuous current 2 a rms digital output x1b: 20?21 type transistor output pnp max. switching voltage 30 vdc max. switching current 100 ma / 30 vdc, short-circuit protected frequency 10 hz ?16 khz resolution 1 hz accuracy 0.2% wire size 1.5...0.25 mm 2 16...24 awg torque 0.5 nm / 4.4 lbf in. brake resistor connection short-circuit protection (iec 61800-5-1, iec 60439-1, ul 508c) the brake resistor output is conditionally short-circuit proof by iec/en 61800-5-1 and ul 508c. for correct fuse selection, contact your local abb representative. rated conditional short-circuit current as defined in iec 60439-1 and the short-circuit test current by ul 508c is 100 ka. efficiency approximately 95 to 98% at nominal power level, depending on the drive size and options cooling method r0: natural convection cooling. r1?r4: internal fan, flow direction from bottom to top. free space around the drive see chapter mechanical installation , page 26 . degrees of protection ip20 (cabinet installation) / ul open: standard enclosure. the drive must be installed in a cabinet to fulfil the requirements for shielding from contact. ip20 / nema 1: achieved with an option kit including a hood and a connection box.
technical data 298 ambient conditions environmental limits for the drive are given below. the drive is to be used in a heated indoor controlled environment. operation installed for stationary use storage in the protective package transportation in the protective package installation site altitude 0 to 2000 m (6600 ft) above sea level [above 1000 m (3300 ft), see section derating on page 291 ] -- air temperature -10 to +50c (14 to 122f). no frost allowed. see section derating on page 291 . -40 to +70c (-40 to +158f) -40 to +70c (-40 to +158f) relative humidity 0 to 95% max. 95% max. 95% no condensation allowed. maximum allowed relative humidity is 60% in the presence of corrosive gases. contamination levels (iec 60721-3-3, iec 60721-3-2, iec 60721-3-1) no conductive dust allowed. according to iec 60721-3-3, chemical gases: class 3c2 solid particles: class 3s2. the acs350 must be installed in clean air according to enclosure classification. cooling air must be clean, free from corrosive materials and electrically conductive dust. according to iec 60721-3-1, chemical gases: class 1c2 solid particles: class 1s2 according to iec 60721-3-2, chemical gases: class 2c2 solid particles: class 2s2 sinusoidal vibration (iec 60721-3-3) tested according to iec 60721-3-3, mechanical conditions: class 3m4 2?9 hz, 3.0 mm (0.12 in.) 9?200 hz, 10 m/s 2 (33 ft/s 2 ) -- shock (iec 60068-2-27, ista 1a) - according to ista 1a. max. 100 m/s 2 (330 ft/s 2 ), 11 m s. according to ista 1a. max. 100 m/s 2 (330 ft/s 2 ), 11 m s. free fall not allowed 76cm (30in.) 76cm (30in.) materials drive enclosure ? pc/abs 2 mm, pc+10%gf 2.5?3 mm and pa66+25%gf 1.5 mm, all in color ncs 1502-y (ral 9002 / pms 420 c) ? hot-dip zinc coated steel sheet 1.5 mm, thickness of coating 20 micrometers ? extruded aluminium alsi. package corrugated cardboard. disposal the drive contains raw materials that should be recycled to preserve energy and natural resources. the package materials are environmentally compatible and recyclable. all metal parts can be recycled. the plastic parts can either be recycled or burned under controlled circumstances, according to local regulations. most recyclable parts are marked with recycling marks. if recycling is not feasible, all parts excluding electrolytic capacitors and printed circuit boards can be landfilled. the dc capacitors contain electrolyte, which is classified as hazardous waste within the eu. they must be removed and handled according to local regulations. for further information on environmental aspects and more detailed recycling instructions, please contact your local abb distributor.
technical data 299 ce marking the ce mark is attached to the drive to verify that the drive follows the provisions of the european low voltage and emc directives (directive 73/23/eec, as amended by 93/68/eec, and directive 89/336/ eec, as amended by 93/68/eec). compliance with the emc directive the emc directive defines the requirements for immunity and emissions of electrical equipment used within the european union. the emc product standard [en 61800-3 (2004)] covers requirements stated for drives. compliance with en 61800-3 (2004) see page 301 . c-tick marking see the type designation label for the valid markings of your drive. c-tick marking is required in australia and new zealand. a c-tick mark is attached to the drive to verify compliance with the relevant standard (iec 61800-3 (2004) ? adjustable speed electrical power drive systems ? part 3: emc product standard including specific test methods), mandated by the trans- tasman electromagnetic compatibility scheme. the trans-tasman electromagnetic compatibility scheme (emcs) was introduced by the australian communication authority (aca) and the radio spectrum management group (rsm) of the new zealand ministry of economic development (nzmed) in november 2001. the aim of the scheme is to protect the radio frequency spectrum by introducing technical limits for emission from electrical/ electronic products. compliance with iec 61800-3 (2004) see page 301 . rohs marking the rohs mark is attached to the drive to verify that drive follows the provisions of the european rohs directive. rohs = the restriction of the use of certain hazardous substances in electrical and electronic equipment. applicable standards the drive complies with the following standards: ? iec/en 61800-5-1 (2003) electrical, thermal and functional safety requirements for adjustable frequency a.c. power drives ? iec/en 60204-1 (1997) + amendment a1 (1999) safety of machinery. electrical equipment of machines. part 1: general requirements. provisions for compliance: the final assembler of the machine is responsible for installing - an emergency-stop device - a supply disconnecting device. ? iec/en 61800-3 (2004) adjustable speed electrical power drive systems. part 3: emc requirements and specific test methods ? ul 508c ul standard for safety, power conversion equipment, third edition
technical data 300 ul marking see the type designation label for the valid markings of your drive. the ul mark is attached to the drive to verify that it meets ul requirements . ul checklist input power connection ? see section input power connection on page 296 . disconnecting device (disconnecting means) ? see section supply disconnecting device on page 29 . ambient conditions ? the drives are to be used in a heated indoor controlled environment. see section ambient conditions on page 298 for specific limits. input cable fuses ? for installation in the united states, branch circuit protection must be provided in accordance with the national electrical code (nec) and any applicable local codes. to fulfil this requirement, use the ul classified fuses given in section power cable sizes and fuses on page 293 . for installation in canada, branch circuit protection must be provided in accordance with canadian electrical code and any applicable provincial codes. to fulfil this requirement, use the ul classified fuses given in section power cable sizes and fuses on page 293 . power cable selection ? see section selecting the power cables on page 32 . power cable connections ? for the connection diagram and tightening torques, see section connecting the power cables on page 38 . overload protection ? the drive provides overload protection in accordance with the national electrical code (us). braking ? the drive has an internal brake chopper. when applied with appropriately sized brake resistors, the brake chopper will allow the drive to dissipate regenerative energy (normally associated with quickly decelerating a motor). brake resistor selection is discussed in section brake resistors on page 302 . iec/en 61800-3 (2004) definitions emc stands for e lectro m agnetic c ompatibility. it is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. likewise, the equipment must not disturb or interfere with any other product or system within its locality. first environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes. second environment includes establishments connected to a network not directly supplying domestic premises. drive of category c2: drive of rated voltage less than 1000 v and intended to be installed and commissioned only by a professional when used in the first environment. note: a professional is a person or organisation having necessary skills in installing and/or commissioning power drive systems, including their emc aspects. category c2 has the same emc emission limits as the earlier class first environment restricted distribution. emc standard iec/en 61800-3 does not any more restrict the distribution of the drive, but the using, installation and commissioning are defined. drive of category c3: drive of rated voltage less than 1000 v, intended for use in the second environment and not intended for use in the first environment. category c3 has the same emc emission limits as the earlier class second environment unrestricted distribution.
technical data 301 compliance with the iec/en 61800-3 (2004) the immunity performance of the drive complies with the demands of iec/en 61800-3, second environment (see page 299 for iec/en 61800-3 definitions). the emission limits of iec/en 61800-3 are complied with the provisions described below. first environment (drives of category c2) 1. the optional emc filter is selected according to the abb documentation and installed as specified in the emc filter manual. 2. the motor and control cables are selected as specified in this manual. 3. the drive is installed according to the instructions given in this manual. 4. motor cable length maximum 30 m (100 ft) with 4 khz switching frequency. warning! in a domestic environment, this product may cause radio inference, in which case supplementary mitigation measures may be required. second environment (drives of category c3) 1. the internal emc filter is connected (the metal screw at emc is in place) or the optional emc filter is installed. 2. the motor and control cables are selected as specified in this manual. 3. the drive is installed according to the instructions given in this manual. 4. with the internal emc filter: motor cable length 30 m (100 ft) with 4 khz switching frequency. warning! a drive of category c3 is not intended to be used on a low-voltage public network which supplies domestic premises. radio frequency interference is expected if the drive is used on such a network. note: it is not allowed to install a drive with the internal emc filter connected on it (ungrounded) systems. the supply network becomes connected to ground potential through the emc filter capacitors which may cause danger or damage the drive. note: it is not allowed to install a drive with the internal emc filter connected on a corner grounded tn system as this would damage the drive. product protection in the usa this product is protected by one or more of the following us patents: 4,920,306 5,301,085 5,463,302 5,521,483 5,532,568 5,589,754 5,612,604 5,654,624 5,799,805 5,940,286 5,942,874 5,952,613 6,094,364 6,147,887 6,175,256 6,184,740 6,195,274 6,229,356 6,252,436 6,265,724 6,305,464 6,313,599 6,316,896 6,335,607 6,370,049 6,396,236 6,448,735 6,498,452 6,552,510 6,597,148 6,741,059 6,774,758 6,844,794 6,856,502 6,859,374 6,922,883 6,940,253 6,934,169 6,956,352 6,958,923 6,967,453 6,972,976 6,977,449 6,984,958 6,985,371 6,992,908 6,999,329 7,023,160 7,034,510 7,036,223 7,045,987 7,057,908 7,059,390 7,067,997 7,082,374 7,084,604 7,098,623 7,102,325 d503,931 d510,319 d510,320 d511,137 d511,150 d512,026 d512,696 d521,466 other patents pending.
technical data 302 brake resistors acs350 drives have an internal brake chopper as standard equipment. the brake resistor is selected using the table and equations presented in this section. brake resistor selection 1. determine the required maximum braking power p rmax for the application. p rmax must be smaller than p brmax given in the table on page 303 for the used drive type. 2. calculate resistance r with equation 1. 3. calculate energy e rpulse with equation 2. 4. select the resistor so that the following conditions are met: ? the rated power of the resistor must be greater than or equal to p rmax . ? resistance r must be between r min and r max given in the table for the used drive type. ? the resistor must be able to dissipate energy e rpulse during the braking cycle t . equations for selecting the resistor: where r = selected brake resistor value (ohm) p rmax = maximum power during the braking cycle (w) p rave = average power during the braking cycle (w) e rpulse = energy conducted into the resistor during a single braking pulse (j) t on = length of the braking pulse (s) t = length of the braking cycle (s). p rmax 150000 p rmax p rave = t on t r = t on p rmax p rave t eq. 1. eq. 3. for conversion, use 1 hp = 746 w. 450000 p rmax u n = 200?240 v: u n = 380?415 v: r = p rmax e rpulse = t on eq. 2. 615000 p rmax u n = 415?480 v: r =
technical data 303 r min = minimum allowed brake resistor r max = maximum allowed brake resistor p brmax = maximum braking capacity of the drive, must exceed the desired braking power. warning! never use a brake resistor with a resistance below the minimum value specified for the particular drive. the drive and the internal chopper are not able to handle the overcurrent caused by the low resistance. type acs350- r min r max p brmax ohm ohm kw hp 1-phase u n = 200...240 v (200, 208, 220, 230, 240 v) 01x-02a4-2 70 390 0.37 0.5 01x-04a7-2 40 200 0.75 1 01x-06a7-2 40 130 1.1 1.5 01x-07a5-2 30 100 1.5 2 01x-09a8-2 30 70 2.2 3 3-phase u n = 200...240 v (200, 208, 220, 230, 240 v) 03x-02a4-2 70 390 0.37 0.5 03x-03a5-2 70 260 0.55 0.75 03x-04a7-2 40 200 0.75 1 03x-06a7-2 40 130 1.1 1.5 03x-07a5-2 30 100 1.5 2 03x-09a8-2 30 70 2.2 3 03x-13a3-2 30 50 3.0 3 03x-17a6-2 30 40 4.0 5 03x-24a4- 2 18 25 5.5 7.5 03x-31a0-2 7 19 7.5 10 03x-46a2-2 7 13 11.0 15 3-phase u n = 380...480 v (380, 400, 415, 440, 460, 480 v) 03x-01a2-4 200 1180 0.37 0.5 03x-01a9-4 175 800 0.55 0.75 03x-02a4-4 165 590 0.75 1 03x-03a3-4 150 400 1.1 1.5 03x-04a1-4 130 300 1.5 2 03x-05a6-4 100 200 2.2 3 03x-07a3-4 70 150 3.0 3 03x-08a8-4 70 110 4.0 5 03x-12a5-4 40 80 5.5 7.5 03x-15a6-4 40 60 7.5 10 03x-23a1-4 30 40 11 15 03x-31a0-4 16 29 15 20 03x-38a0-4 13 23 18.5 25 03x-44a0-4 13 19 22.0 30 00353783.xls g
technical data 304 resistor installation and wiring all resistors must be installed in a place where they will cool. warning! the materials near the brake resistor must be non-flammable. the surface temperature of the resistor is high. air flowing from the resistor is of hundreds of degrees celsius. protect the resistor against contact. use a shielded cable with the conductor size specified in section power cables: terminal sizes, maximum cable diameters and tightening torques on page 295 . for short-circuit protection of the brake resistor connection, see brake resistor connection on page 297 . alternatively, a two-conductor shielded cable with the same cross-sectional area can be used. the maximum length of the resistor cable(s) is 5 m (16 ft). for the connections, see the power connection diagram of the drive on page 38 . mandatory circuit protection the following setup is essential for safety ? it interrupts the main supply in fault situations involving chopper shorts: ? equip the drive with a main contactor. ? wire the contactor so that it opens if the resistor thermal switch opens (an overheated resistor opens the contactor). below is a simple wiring diagram example. parameter set-up to enable resistor braking, switch off the drive?s overvoltage control by setting parameter 2005 to 0 (disable). acs350 u1 v1 w1 l1 l2 l3 1 2 3 4 5 6 k1 q thermal switch of the resistor fuses
dimensions 305 dimensions dimensional drawings of the acs350 are shown below. the dimensions are given in millimeters and [inches].
dimensions 306 frame sizes r0 and r1, ip20 (cabinet installation) / ul open r1 and r0 are identical except for the fan at the top of r1. 3afe68488079-b frame sizes r0 and r1, ip20 (cabinet installation) / ul open var emc
dimensions 307 frame sizes r0 and r1, ip20 / nema 1 r1 and r0 are identical except for the fan at the top of r1. 3afe68577977-a frame sizes r0 and r1, ip20 / nema 1 var emc
dimensions 308 frame size r2, ip20 (cabinet installation) / ul open 3afe68585619-a frame size r2, ip20 (cabinet installation) / ul open var emc
dimensions 309 frame size r2, ip20 / nema 1 3afe68586658-a frame size r2, ip20 / nema 1 var emc
dimensions 310 frame size r3, ip20 (cabinet installation) / ul open 3afe68487587-b frame size r3, ip20 (cabinet installation) / ul open var emc
dimensions 311 frame size r3, ip20 / nema 1 3afe68579872-b frame size r3, ip20 / nema 1 var emc
dimensions 312 frame size r4, ip20 (cabinet installation) / ul open frame size r4 (cabinet installation) / ul open 3afe68935644

3afe68462401 rev d / en effective: 30.09.2007 abb oy ac drives p.o . b o x 1 84 fi-00381 helsinki finland telephone +358 10 22 11 fax +358 10 22 22681 internet http://www.abb.com abb inc. automation technologies drives & motors 16250 west glendale drive new berlin, wi 53151 usa telephone +1 262 785-3200 +1 800-help-365 fax +1 262 780-5135 abb limited daresbury park daresbury warrington cheshire wa4 4bt united kingdom telephone +44 1925 74 1111 fax +44 1925 741212 abb beijing drive systems co. ltd. no. 1, block d, a-10 jiuxianqiao beilu chaoyang district beijing, p.r. china, 100015 telephone +86 10 5821 7788 fax +86 10 5821 7618 internet http://www.abb.com


▲Up To Search▲   

 
Price & Availability of ACS350-XXX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X